9 33

From Knot Atlas
Revision as of 20:06, 29 August 2005 by DrorsRobot (talk | contribs)
Jump to navigationJump to search

9 32.gif

9_32

9 34.gif

9_34

9 33.gif Visit 9 33's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit 9 33's page at Knotilus!

Visit 9 33's page at the original Knot Atlas!

9 33 Quick Notes


9 33 Further Notes and Views

Knot presentations

Planar diagram presentation X4251 X12,8,13,7 X8394 X2,9,3,10 X18,13,1,14 X14,5,15,6 X6,17,7,18 X16,12,17,11 X10,16,11,15
Gauss code 1, -4, 3, -1, 6, -7, 2, -3, 4, -9, 8, -2, 5, -6, 9, -8, 7, -5
Dowker-Thistlethwaite code 4 8 14 12 2 16 18 10 6
Conway Notation [.21.2]

Minimum Braid Representative:

BraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gif
BraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart0.gif
BraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart3.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart4.gif

Length is 9, width is 4.

Braid index is 4.

A Morse Link Presentation:

9 33 ML.gif

Three dimensional invariants

Symmetry type Chiral
Unknotting number 1
3-genus 3
Bridge index 3
Super bridge index
Nakanishi index 1
Maximal Thurston-Bennequin number [-6][-5]
Hyperbolic Volume 13.2805
A-Polynomial See Data:9 33/A-polynomial

[edit Notes for 9 33's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus
Topological 4 genus
Concordance genus
Rasmussen s-Invariant 0

[edit Notes for 9 33's four dimensional invariants]

Polynomial invariants

Alexander polynomial
Conway polynomial
2nd Alexander ideal (db, data sources)
Determinant and Signature { 61, 0 }
Jones polynomial
HOMFLY-PT polynomial (db, data sources)
Kauffman polynomial (db, data sources)
The A2 invariant
The G2 invariant

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {K11n55, ...}

Same Jones Polynomial (up to mirroring, ): {...}

Vassiliev invariants

V2 and V3: (1, -1)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 0 is the signature of 9 33. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-5-4-3-2-101234χ
9         11
7        3 -3
5       41 3
3      53  -2
1     64   2
-1    56    1
-3   45     -1
-5  25      3
-7 14       -3
-9 2        2
-111         -1
Integral Khovanov Homology

(db, data source)

  

The Coloured Jones Polynomials