K11a37
|
|
|
|
Visit K11a37's page at Knotilus!
Visit K11a37's page at the original Knot Atlas! |
| K11a37 Quick Notes |
K11a37 Further Notes and Views
Knot presentations
| Planar diagram presentation | X4251 X8493 X14,5,15,6 X2837 X16,9,17,10 X20,12,21,11 X18,14,19,13 X6,15,7,16 X22,17,1,18 X12,20,13,19 X10,22,11,21 |
| Gauss code | 1, -4, 2, -1, 3, -8, 4, -2, 5, -11, 6, -10, 7, -3, 8, -5, 9, -7, 10, -6, 11, -9 |
| Dowker-Thistlethwaite code | 4 8 14 2 16 20 18 6 22 12 10 |
| Conway Notation | [411,21,2] |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
| Alexander polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -2 t^3+9 t^2-21 t+29-21 t^{-1} +9 t^{-2} -2 t^{-3} } |
| Conway polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -2 z^6-3 z^4-3 z^2+1} |
| 2nd Alexander ideal (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \{1\}} |
| Determinant and Signature | { 93, 0 } |
| Jones polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^7+3 q^6-5 q^5+9 q^4-12 q^3+14 q^2-15 q+13-10 q^{-1} +7 q^{-2} -3 q^{-3} + q^{-4} } |
| HOMFLY-PT polynomial (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -z^6 a^{-2} -z^6+a^2 z^4-3 z^4 a^{-2} +2 z^4 a^{-4} -3 z^4+2 a^2 z^2-5 z^2 a^{-2} +5 z^2 a^{-4} -z^2 a^{-6} -4 z^2+2 a^2-3 a^{-2} +4 a^{-4} - a^{-6} -1} |
| Kauffman polynomial (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^{10} a^{-2} +z^{10} a^{-4} +4 z^9 a^{-1} +7 z^9 a^{-3} +3 z^9 a^{-5} +9 z^8 a^{-2} +6 z^8 a^{-4} +3 z^8 a^{-6} +6 z^8+7 a z^7-3 z^7 a^{-1} -20 z^7 a^{-3} -9 z^7 a^{-5} +z^7 a^{-7} +6 a^2 z^6-34 z^6 a^{-2} -35 z^6 a^{-4} -13 z^6 a^{-6} -6 z^6+3 a^3 z^5-9 a z^5-3 z^5 a^{-1} +16 z^5 a^{-3} +3 z^5 a^{-5} -4 z^5 a^{-7} +a^4 z^4-8 a^2 z^4+40 z^4 a^{-2} +50 z^4 a^{-4} +17 z^4 a^{-6} -2 z^4-2 a^3 z^3+5 a z^3-z^3 a^{-1} -7 z^3 a^{-3} +5 z^3 a^{-5} +4 z^3 a^{-7} -a^4 z^2+6 a^2 z^2-22 z^2 a^{-2} -27 z^2 a^{-4} -8 z^2 a^{-6} +4 z^2-a z+2 z a^{-1} +3 z a^{-3} -z a^{-5} -z a^{-7} -2 a^2+3 a^{-2} +4 a^{-4} + a^{-6} -1} |
| The A2 invariant | Data:K11a37/QuantumInvariant/A2/1,0 |
| The G2 invariant | Data:K11a37/QuantumInvariant/G2/1,0 |
KnotTheory`, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["K11a37"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -2 t^3+9 t^2-21 t+29-21 t^{-1} +9 t^{-2} -2 t^{-3} } |
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -2 z^6-3 z^4-3 z^2+1} |
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \{1\}} |
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 93, 0 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^7+3 q^6-5 q^5+9 q^4-12 q^3+14 q^2-15 q+13-10 q^{-1} +7 q^{-2} -3 q^{-3} + q^{-4} } |
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -z^6 a^{-2} -z^6+a^2 z^4-3 z^4 a^{-2} +2 z^4 a^{-4} -3 z^4+2 a^2 z^2-5 z^2 a^{-2} +5 z^2 a^{-4} -z^2 a^{-6} -4 z^2+2 a^2-3 a^{-2} +4 a^{-4} - a^{-6} -1} |
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^{10} a^{-2} +z^{10} a^{-4} +4 z^9 a^{-1} +7 z^9 a^{-3} +3 z^9 a^{-5} +9 z^8 a^{-2} +6 z^8 a^{-4} +3 z^8 a^{-6} +6 z^8+7 a z^7-3 z^7 a^{-1} -20 z^7 a^{-3} -9 z^7 a^{-5} +z^7 a^{-7} +6 a^2 z^6-34 z^6 a^{-2} -35 z^6 a^{-4} -13 z^6 a^{-6} -6 z^6+3 a^3 z^5-9 a z^5-3 z^5 a^{-1} +16 z^5 a^{-3} +3 z^5 a^{-5} -4 z^5 a^{-7} +a^4 z^4-8 a^2 z^4+40 z^4 a^{-2} +50 z^4 a^{-4} +17 z^4 a^{-6} -2 z^4-2 a^3 z^3+5 a z^3-z^3 a^{-1} -7 z^3 a^{-3} +5 z^3 a^{-5} +4 z^3 a^{-7} -a^4 z^2+6 a^2 z^2-22 z^2 a^{-2} -27 z^2 a^{-4} -8 z^2 a^{-6} +4 z^2-a z+2 z a^{-1} +3 z a^{-3} -z a^{-5} -z a^{-7} -2 a^2+3 a^{-2} +4 a^{-4} + a^{-6} -1} |
Vassiliev invariants
| V2 and V3: | (-3, 0) |
| V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
| The coefficients of the monomials Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^rq^j} are shown, along with their alternating sums Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \chi} (fixed Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j} , alternation over Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r} ). The squares with yellow highlighting are those on the "critical diagonals", where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j-2r=s+1} or Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j-2r=s-1} , where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s=} 0 is the signature of K11a37. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \textrm{Include}(\textrm{ColouredJonesM.mhtml})}
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 17, 2005, 14:44:34)... | |
In[2]:= | Crossings[Knot[11, Alternating, 37]] |
Out[2]= | 11 |
In[3]:= | PD[Knot[11, Alternating, 37]] |
Out[3]= | PD[X[4, 2, 5, 1], X[8, 4, 9, 3], X[14, 5, 15, 6], X[2, 8, 3, 7],X[16, 9, 17, 10], X[20, 12, 21, 11], X[18, 14, 19, 13], X[6, 15, 7, 16], X[22, 17, 1, 18], X[12, 20, 13, 19],X[10, 22, 11, 21]] |
In[4]:= | GaussCode[Knot[11, Alternating, 37]] |
Out[4]= | GaussCode[1, -4, 2, -1, 3, -8, 4, -2, 5, -11, 6, -10, 7, -3, 8, -5, 9, -7, 10, -6, 11, -9] |
In[5]:= | BR[Knot[11, Alternating, 37]] |
Out[5]= | BR[Knot[11, Alternating, 37]] |
In[6]:= | alex = Alexander[Knot[11, Alternating, 37]][t] |
Out[6]= | 2 9 21 2 3 |
In[7]:= | Conway[Knot[11, Alternating, 37]][z] |
Out[7]= | 2 4 6 1 - 3 z - 3 z - 2 z |
In[8]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[8]= | {Knot[11, Alternating, 37]} |
In[9]:= | {KnotDet[Knot[11, Alternating, 37]], KnotSignature[Knot[11, Alternating, 37]]} |
Out[9]= | {93, 0} |
In[10]:= | J=Jones[Knot[11, Alternating, 37]][q] |
Out[10]= | -4 3 7 10 2 3 4 5 6 7 |
In[11]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[11]= | {Knot[11, Alternating, 37]} |
In[12]:= | A2Invariant[Knot[11, Alternating, 37]][q] |
Out[12]= | -12 -10 2 2 2 3 2 4 6 8 10 |
In[13]:= | Kauffman[Knot[11, Alternating, 37]][a, z] |
Out[13]= | 2-6 4 3 2 z z 3 z 2 z 2 8 z |
In[14]:= | {Vassiliev[2][Knot[11, Alternating, 37]], Vassiliev[3][Knot[11, Alternating, 37]]} |
Out[14]= | {0, 0} |
In[15]:= | Kh[Knot[11, Alternating, 37]][q, t] |
Out[15]= | 8 1 2 1 5 2 5 5 |


