K11a37

From Knot Atlas
Jump to navigationJump to search

K11a36.gif

K11a36

K11a38.gif

K11a38

K11a37.gif
(Knotscape image)
See the full Hoste-Thistlethwaite Table of 11 Crossing Knots.

Visit K11a37 at Knotilus!



Knot presentations

Planar diagram presentation X4251 X8493 X14,5,15,6 X2837 X16,9,17,10 X20,12,21,11 X18,14,19,13 X6,15,7,16 X22,17,1,18 X12,20,13,19 X10,22,11,21
Gauss code 1, -4, 2, -1, 3, -8, 4, -2, 5, -11, 6, -10, 7, -3, 8, -5, 9, -7, 10, -6, 11, -9
Dowker-Thistlethwaite code 4 8 14 2 16 20 18 6 22 12 10
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart0.gif
BraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart2.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart3.gif
BraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart4.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation K11a37 ML.gif

Three dimensional invariants

Symmetry type Reversible
Unknotting number [math]\displaystyle{ \{1,2\} }[/math]
3-genus 3
Bridge index 3
Super bridge index Missing
Nakanishi index Missing
Maximal Thurston-Bennequin number Data:K11a37/ThurstonBennequinNumber
Hyperbolic Volume 13.3384
A-Polynomial See Data:K11a37/A-polynomial

[edit Notes for K11a37's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus Missing
Topological 4 genus Missing
Concordance genus [math]\displaystyle{ 3 }[/math]
Rasmussen s-Invariant 0

[edit Notes for K11a37's four dimensional invariants]

Polynomial invariants

Alexander polynomial [math]\displaystyle{ -2 t^3+9 t^2-21 t+29-21 t^{-1} +9 t^{-2} -2 t^{-3} }[/math]
Conway polynomial [math]\displaystyle{ -2 z^6-3 z^4-3 z^2+1 }[/math]
2nd Alexander ideal (db, data sources) [math]\displaystyle{ \{1\} }[/math]
Determinant and Signature { 93, 0 }
Jones polynomial [math]\displaystyle{ -q^7+3 q^6-5 q^5+9 q^4-12 q^3+14 q^2-15 q+13-10 q^{-1} +7 q^{-2} -3 q^{-3} + q^{-4} }[/math]
HOMFLY-PT polynomial (db, data sources) [math]\displaystyle{ -z^6 a^{-2} -z^6+a^2 z^4-3 z^4 a^{-2} +2 z^4 a^{-4} -3 z^4+2 a^2 z^2-5 z^2 a^{-2} +5 z^2 a^{-4} -z^2 a^{-6} -4 z^2+2 a^2-3 a^{-2} +4 a^{-4} - a^{-6} -1 }[/math]
Kauffman polynomial (db, data sources) [math]\displaystyle{ z^{10} a^{-2} +z^{10} a^{-4} +4 z^9 a^{-1} +7 z^9 a^{-3} +3 z^9 a^{-5} +9 z^8 a^{-2} +6 z^8 a^{-4} +3 z^8 a^{-6} +6 z^8+7 a z^7-3 z^7 a^{-1} -20 z^7 a^{-3} -9 z^7 a^{-5} +z^7 a^{-7} +6 a^2 z^6-34 z^6 a^{-2} -35 z^6 a^{-4} -13 z^6 a^{-6} -6 z^6+3 a^3 z^5-9 a z^5-3 z^5 a^{-1} +16 z^5 a^{-3} +3 z^5 a^{-5} -4 z^5 a^{-7} +a^4 z^4-8 a^2 z^4+40 z^4 a^{-2} +50 z^4 a^{-4} +17 z^4 a^{-6} -2 z^4-2 a^3 z^3+5 a z^3-z^3 a^{-1} -7 z^3 a^{-3} +5 z^3 a^{-5} +4 z^3 a^{-7} -a^4 z^2+6 a^2 z^2-22 z^2 a^{-2} -27 z^2 a^{-4} -8 z^2 a^{-6} +4 z^2-a z+2 z a^{-1} +3 z a^{-3} -z a^{-5} -z a^{-7} -2 a^2+3 a^{-2} +4 a^{-4} + a^{-6} -1 }[/math]
The A2 invariant Data:K11a37/QuantumInvariant/A2/1,0
The G2 invariant Data:K11a37/QuantumInvariant/G2/1,0

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {}

Same Jones Polynomial (up to mirroring, [math]\displaystyle{ q\leftrightarrow q^{-1} }[/math]): {}

Vassiliev invariants

V2 and V3: (-3, 0)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9
[math]\displaystyle{ -12 }[/math] [math]\displaystyle{ 0 }[/math] [math]\displaystyle{ 72 }[/math] [math]\displaystyle{ 146 }[/math] [math]\displaystyle{ 62 }[/math] [math]\displaystyle{ 0 }[/math] [math]\displaystyle{ 32 }[/math] [math]\displaystyle{ 0 }[/math] [math]\displaystyle{ 0 }[/math] [math]\displaystyle{ -288 }[/math] [math]\displaystyle{ 0 }[/math] [math]\displaystyle{ -1752 }[/math] [math]\displaystyle{ -744 }[/math] [math]\displaystyle{ -\frac{18591}{10} }[/math] [math]\displaystyle{ \frac{8426}{15} }[/math] [math]\displaystyle{ -\frac{29582}{15} }[/math] [math]\displaystyle{ \frac{1375}{6} }[/math] [math]\displaystyle{ -\frac{4511}{10} }[/math]

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). The squares with yellow highlighting are those on the "critical diagonals", where [math]\displaystyle{ j-2r=s+1 }[/math] or [math]\displaystyle{ j-2r=s-1 }[/math], where [math]\displaystyle{ s= }[/math]0 is the signature of K11a37. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-4-3-2-101234567χ
15           1-1
13          2 2
11         31 -2
9        62  4
7       63   -3
5      86    2
3     76     -1
1    68      -2
-1   58       3
-3  25        -3
-5 15         4
-7 2          -2
-91           1
Integral Khovanov Homology

(db, data source)

  
[math]\displaystyle{ \dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} }[/math] [math]\displaystyle{ i=-1 }[/math] [math]\displaystyle{ i=1 }[/math]
[math]\displaystyle{ r=-4 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-3 }[/math] [math]\displaystyle{ {\mathbb Z}^{2}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-2 }[/math] [math]\displaystyle{ {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{2} }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math]
[math]\displaystyle{ r=-1 }[/math] [math]\displaystyle{ {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{5} }[/math] [math]\displaystyle{ {\mathbb Z}^{5} }[/math]
[math]\displaystyle{ r=0 }[/math] [math]\displaystyle{ {\mathbb Z}^{8}\oplus{\mathbb Z}_2^{5} }[/math] [math]\displaystyle{ {\mathbb Z}^{6} }[/math]
[math]\displaystyle{ r=1 }[/math] [math]\displaystyle{ {\mathbb Z}^{8}\oplus{\mathbb Z}_2^{7} }[/math] [math]\displaystyle{ {\mathbb Z}^{7} }[/math]
[math]\displaystyle{ r=2 }[/math] [math]\displaystyle{ {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{8} }[/math] [math]\displaystyle{ {\mathbb Z}^{8} }[/math]
[math]\displaystyle{ r=3 }[/math] [math]\displaystyle{ {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{6} }[/math] [math]\displaystyle{ {\mathbb Z}^{6} }[/math]
[math]\displaystyle{ r=4 }[/math] [math]\displaystyle{ {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{6} }[/math] [math]\displaystyle{ {\mathbb Z}^{6} }[/math]
[math]\displaystyle{ r=5 }[/math] [math]\displaystyle{ {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{3} }[/math] [math]\displaystyle{ {\mathbb Z}^{3} }[/math]
[math]\displaystyle{ r=6 }[/math] [math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2^{2} }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math]
[math]\displaystyle{ r=7 }[/math] [math]\displaystyle{ {\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages.

See/edit the Hoste-Thistlethwaite Knot Page master template (intermediate).

See/edit the Hoste-Thistlethwaite_Splice_Base (expert).

Back to the top.

K11a36.gif

K11a36

K11a38.gif

K11a38