K11a36
|
|
![]() (Knotscape image) |
See the full Hoste-Thistlethwaite Table of 11 Crossing Knots. |
Knot presentations
Planar diagram presentation | X4251 X8493 X14,6,15,5 X2837 X16,9,17,10 X20,11,21,12 X6,14,7,13 X12,15,13,16 X22,17,1,18 X10,19,11,20 X18,21,19,22 |
Gauss code | 1, -4, 2, -1, 3, -7, 4, -2, 5, -10, 6, -8, 7, -3, 8, -5, 9, -11, 10, -6, 11, -9 |
Dowker-Thistlethwaite code | 4 8 14 2 16 20 6 12 22 10 18 |
A Braid Representative |
| ||||||
A Morse Link Presentation | ![]() |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
Alexander polynomial | |
Conway polynomial | |
2nd Alexander ideal (db, data sources) | |
Determinant and Signature | { 121, 0 } |
Jones polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^5+3 q^4-7 q^3+12 q^2-16 q+20-19 q^{-1} +17 q^{-2} -13 q^{-3} +8 q^{-4} -4 q^{-5} + q^{-6} } |
HOMFLY-PT polynomial (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -a^2 z^6-z^6+a^4 z^4-2 a^2 z^4+2 z^4 a^{-2} -z^4+a^4 z^2-2 a^2 z^2+3 z^2 a^{-2} -z^2 a^{-4} +z^2-a^2+ a^{-2} - a^{-4} +2} |
Kauffman polynomial (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a^2 z^{10}+z^{10}+4 a^3 z^9+7 a z^9+3 z^9 a^{-1} +6 a^4 z^8+12 a^2 z^8+5 z^8 a^{-2} +11 z^8+4 a^5 z^7+a^3 z^7+8 z^7 a^{-1} +5 z^7 a^{-3} +a^6 z^6-13 a^4 z^6-28 a^2 z^6-2 z^6 a^{-2} +3 z^6 a^{-4} -19 z^6-10 a^5 z^5-20 a^3 z^5-25 a z^5-23 z^5 a^{-1} -7 z^5 a^{-3} +z^5 a^{-5} -2 a^6 z^4+6 a^4 z^4+15 a^2 z^4-5 z^4 a^{-2} -5 z^4 a^{-4} +7 z^4+7 a^5 z^3+18 a^3 z^3+25 a z^3+20 z^3 a^{-1} +4 z^3 a^{-3} -2 z^3 a^{-5} +a^6 z^2-3 a^2 z^2+5 z^2 a^{-2} +3 z^2 a^{-4} -a^5 z-5 a^3 z-8 a z-6 z a^{-1} -z a^{-3} +z a^{-5} +a^2- a^{-2} - a^{-4} +2} |
The A2 invariant | Data:K11a36/QuantumInvariant/A2/1,0 |
The G2 invariant | Data:K11a36/QuantumInvariant/G2/1,0 |
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["K11a36"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 121, 0 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^5+3 q^4-7 q^3+12 q^2-16 q+20-19 q^{-1} +17 q^{-2} -13 q^{-3} +8 q^{-4} -4 q^{-5} + q^{-6} } |
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -a^2 z^6-z^6+a^4 z^4-2 a^2 z^4+2 z^4 a^{-2} -z^4+a^4 z^2-2 a^2 z^2+3 z^2 a^{-2} -z^2 a^{-4} +z^2-a^2+ a^{-2} - a^{-4} +2} |
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a^2 z^{10}+z^{10}+4 a^3 z^9+7 a z^9+3 z^9 a^{-1} +6 a^4 z^8+12 a^2 z^8+5 z^8 a^{-2} +11 z^8+4 a^5 z^7+a^3 z^7+8 z^7 a^{-1} +5 z^7 a^{-3} +a^6 z^6-13 a^4 z^6-28 a^2 z^6-2 z^6 a^{-2} +3 z^6 a^{-4} -19 z^6-10 a^5 z^5-20 a^3 z^5-25 a z^5-23 z^5 a^{-1} -7 z^5 a^{-3} +z^5 a^{-5} -2 a^6 z^4+6 a^4 z^4+15 a^2 z^4-5 z^4 a^{-2} -5 z^4 a^{-4} +7 z^4+7 a^5 z^3+18 a^3 z^3+25 a z^3+20 z^3 a^{-1} +4 z^3 a^{-3} -2 z^3 a^{-5} +a^6 z^2-3 a^2 z^2+5 z^2 a^{-2} +3 z^2 a^{-4} -a^5 z-5 a^3 z-8 a z-6 z a^{-1} -z a^{-3} +z a^{-5} +a^2- a^{-2} - a^{-4} +2} |
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {K11a169,}
Same Jones Polynomial (up to mirroring, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q\leftrightarrow q^{-1}} ): {K11a35, K11a316,}
KnotTheory`
. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["K11a36"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -2 t^3+12 t^2-28 t+37-28 t^{-1} +12 t^{-2} -2 t^{-3} } , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^5+3 q^4-7 q^3+12 q^2-16 q+20-19 q^{-1} +17 q^{-2} -13 q^{-3} +8 q^{-4} -4 q^{-5} + q^{-6} } } |
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
Out[5]=
|
{K11a169,} |
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
Out[6]=
|
{K11a35, K11a316,} |
Vassiliev invariants
V2 and V3: | (2, 1) |
V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 0 is the signature of K11a36. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session.
Modifying This Page
Read me first: Modifying Knot Pages.
See/edit the Hoste-Thistlethwaite Knot Page master template (intermediate). See/edit the Hoste-Thistlethwaite_Splice_Base (expert). Back to the top. |
|