K11a246

From Knot Atlas
Revision as of 12:00, 30 August 2005 by ScottKnotPageRobot (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigationJump to search

K11a245.gif

K11a245

K11a247.gif

K11a247

K11a246.gif
(Knotscape image)
See the full Hoste-Thistlethwaite Table of 11 Crossing Knots.

Visit K11a246 at Knotilus!



Knot presentations

Planar diagram presentation X4251 X14,4,15,3 X20,6,21,5 X22,8,1,7 X18,10,19,9 X16,12,17,11 X2,14,3,13 X12,16,13,15 X10,18,11,17 X8,20,9,19 X6,22,7,21
Gauss code 1, -7, 2, -1, 3, -11, 4, -10, 5, -9, 6, -8, 7, -2, 8, -6, 9, -5, 10, -3, 11, -4
Dowker-Thistlethwaite code 4 14 20 22 18 16 2 12 10 8 6
A Braid Representative {{{braid_table}}}
A Morse Link Presentation K11a246 ML.gif

Four dimensional invariants

Smooth 4 genus Missing
Topological 4 genus Missing
Concordance genus [math]\displaystyle{ 2 }[/math]
Rasmussen s-Invariant -4

[edit Notes for K11a246's four dimensional invariants]

Polynomial invariants

Alexander polynomial [math]\displaystyle{ 4 t^2-10 t+13-10 t^{-1} +4 t^{-2} }[/math]
Conway polynomial [math]\displaystyle{ 4 z^4+6 z^2+1 }[/math]
2nd Alexander ideal (db, data sources) [math]\displaystyle{ \{1\} }[/math]
Determinant and Signature { 41, 4 }
Jones polynomial [math]\displaystyle{ -q^{13}+2 q^{12}-3 q^{11}+4 q^{10}-5 q^9+6 q^8-6 q^7+5 q^6-4 q^5+3 q^4-q^3+q^2 }[/math]
HOMFLY-PT polynomial (db, data sources) [math]\displaystyle{ z^4 a^{-4} +z^4 a^{-6} +z^4 a^{-8} +z^4 a^{-10} +3 z^2 a^{-4} +z^2 a^{-6} +z^2 a^{-8} +2 z^2 a^{-10} -z^2 a^{-12} +2 a^{-4} - a^{-6} + a^{-10} - a^{-12} }[/math]
Kauffman polynomial (db, data sources) [math]\displaystyle{ z^{10} a^{-10} +z^{10} a^{-12} +z^9 a^{-9} +3 z^9 a^{-11} +2 z^9 a^{-13} +z^8 a^{-8} -5 z^8 a^{-10} -4 z^8 a^{-12} +2 z^8 a^{-14} +z^7 a^{-7} -3 z^7 a^{-9} -15 z^7 a^{-11} -10 z^7 a^{-13} +z^7 a^{-15} +z^6 a^{-6} -2 z^6 a^{-8} +12 z^6 a^{-10} +5 z^6 a^{-12} -10 z^6 a^{-14} +z^5 a^{-5} -z^5 a^{-7} +4 z^5 a^{-9} +26 z^5 a^{-11} +15 z^5 a^{-13} -5 z^5 a^{-15} +z^4 a^{-4} +3 z^4 a^{-8} -15 z^4 a^{-10} -6 z^4 a^{-12} +13 z^4 a^{-14} -z^3 a^{-5} +2 z^3 a^{-7} -z^3 a^{-9} -20 z^3 a^{-11} -10 z^3 a^{-13} +6 z^3 a^{-15} -3 z^2 a^{-4} -2 z^2 a^{-6} +7 z^2 a^{-10} +4 z^2 a^{-12} -4 z^2 a^{-14} -z a^{-5} -z a^{-7} +4 z a^{-11} +3 z a^{-13} -z a^{-15} +2 a^{-4} + a^{-6} - a^{-10} - a^{-12} }[/math]
The A2 invariant Data:K11a246/QuantumInvariant/A2/1,0
The G2 invariant Data:K11a246/QuantumInvariant/G2/1,0

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {9_18,}

Same Jones Polynomial (up to mirroring, [math]\displaystyle{ q\leftrightarrow q^{-1} }[/math]): {}

Vassiliev invariants

V2 and V3: (6, 17)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9
[math]\displaystyle{ 24 }[/math] [math]\displaystyle{ 136 }[/math] [math]\displaystyle{ 288 }[/math] [math]\displaystyle{ 876 }[/math] [math]\displaystyle{ 108 }[/math] [math]\displaystyle{ 3264 }[/math] [math]\displaystyle{ \frac{19024}{3} }[/math] [math]\displaystyle{ \frac{2944}{3} }[/math] [math]\displaystyle{ 808 }[/math] [math]\displaystyle{ 2304 }[/math] [math]\displaystyle{ 9248 }[/math] [math]\displaystyle{ 21024 }[/math] [math]\displaystyle{ 2592 }[/math] [math]\displaystyle{ \frac{235991}{5} }[/math] [math]\displaystyle{ \frac{4556}{5} }[/math] [math]\displaystyle{ \frac{261284}{15} }[/math] [math]\displaystyle{ \frac{2041}{3} }[/math] [math]\displaystyle{ \frac{10711}{5} }[/math]

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). The squares with yellow highlighting are those on the "critical diagonals", where [math]\displaystyle{ j-2r=s+1 }[/math] or [math]\displaystyle{ j-2r=s-1 }[/math], where [math]\displaystyle{ s= }[/math]4 is the signature of K11a246. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
01234567891011χ
27           1-1
25          1 1
23         21 -1
21        21  1
19       32   -1
17      32    1
15     33     0
13    23      -1
11   23       1
9  12        -1
7  2         2
511          0
31           1
Integral Khovanov Homology

(db, data source)

  
[math]\displaystyle{ \dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} }[/math] [math]\displaystyle{ i=3 }[/math] [math]\displaystyle{ i=5 }[/math]
[math]\displaystyle{ r=0 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=1 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=2 }[/math] [math]\displaystyle{ {\mathbb Z}^{2}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=3 }[/math] [math]\displaystyle{ {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{2} }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math]
[math]\displaystyle{ r=4 }[/math] [math]\displaystyle{ {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{2} }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math]
[math]\displaystyle{ r=5 }[/math] [math]\displaystyle{ {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{3} }[/math] [math]\displaystyle{ {\mathbb Z}^{3} }[/math]
[math]\displaystyle{ r=6 }[/math] [math]\displaystyle{ {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{3} }[/math] [math]\displaystyle{ {\mathbb Z}^{3} }[/math]
[math]\displaystyle{ r=7 }[/math] [math]\displaystyle{ {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{3} }[/math] [math]\displaystyle{ {\mathbb Z}^{3} }[/math]
[math]\displaystyle{ r=8 }[/math] [math]\displaystyle{ {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{2} }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math]
[math]\displaystyle{ r=9 }[/math] [math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2^{2} }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math]
[math]\displaystyle{ r=10 }[/math] [math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=11 }[/math] [math]\displaystyle{ {\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages.

See/edit the Hoste-Thistlethwaite Knot Page master template (intermediate).

See/edit the Hoste-Thistlethwaite_Splice_Base (expert).

Back to the top.

K11a245.gif

K11a245

K11a247.gif

K11a247