K11a81

From Knot Atlas
Revision as of 16:12, 1 September 2005 by ScottTestRobot (talk | contribs)
Jump to navigationJump to search

K11a80.gif

K11a80

K11a82.gif

K11a82

K11a81.gif
(Knotscape image)
See the full Hoste-Thistlethwaite Table of 11 Crossing Knots.

Visit K11a81 at Knotilus!



Knot presentations

Planar diagram presentation X4251 X10,3,11,4 X12,6,13,5 X14,7,15,8 X22,10,1,9 X2,11,3,12 X18,13,19,14 X20,16,21,15 X8,17,9,18 X6,20,7,19 X16,22,17,21
Gauss code 1, -6, 2, -1, 3, -10, 4, -9, 5, -2, 6, -3, 7, -4, 8, -11, 9, -7, 10, -8, 11, -5
Dowker-Thistlethwaite code 4 10 12 14 22 2 18 20 8 6 16
A Braid Representative {{{braid_table}}}
A Morse Link Presentation K11a81 ML.gif

Three dimensional invariants

Symmetry type Chiral
Unknotting number [math]\displaystyle{ \{1,2\} }[/math]
3-genus 4
Bridge index 3
Super bridge index Missing
Nakanishi index Missing
Maximal Thurston-Bennequin number Data:K11a81/ThurstonBennequinNumber
Hyperbolic Volume 16.051
A-Polynomial See Data:K11a81/A-polynomial

[edit Notes for K11a81's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus Missing
Topological 4 genus Missing
Concordance genus [math]\displaystyle{ 4 }[/math]
Rasmussen s-Invariant -2

[edit Notes for K11a81's four dimensional invariants]

Polynomial invariants

Alexander polynomial [math]\displaystyle{ -t^4+6 t^3-16 t^2+26 t-29+26 t^{-1} -16 t^{-2} +6 t^{-3} - t^{-4} }[/math]
Conway polynomial [math]\displaystyle{ -z^8-2 z^6+1 }[/math]
2nd Alexander ideal (db, data sources) [math]\displaystyle{ \{1\} }[/math]
Determinant and Signature { 127, 2 }
Jones polynomial [math]\displaystyle{ q^7-4 q^6+8 q^5-13 q^4+18 q^3-20 q^2+20 q-17+13 q^{-1} -8 q^{-2} +4 q^{-3} - q^{-4} }[/math]
HOMFLY-PT polynomial (db, data sources) [math]\displaystyle{ -z^8 a^{-2} -5 z^6 a^{-2} +z^6 a^{-4} +2 z^6-a^2 z^4-9 z^4 a^{-2} +3 z^4 a^{-4} +7 z^4-2 a^2 z^2-6 z^2 a^{-2} +2 z^2 a^{-4} +6 z^2+1 }[/math]
Kauffman polynomial (db, data sources) [math]\displaystyle{ 2 z^{10} a^{-2} +2 z^{10}+5 a z^9+12 z^9 a^{-1} +7 z^9 a^{-3} +4 a^2 z^8+15 z^8 a^{-2} +11 z^8 a^{-4} +8 z^8+a^3 z^7-13 a z^7-26 z^7 a^{-1} -z^7 a^{-3} +11 z^7 a^{-5} -14 a^2 z^6-50 z^6 a^{-2} -14 z^6 a^{-4} +8 z^6 a^{-6} -42 z^6-3 a^3 z^5+3 a z^5-23 z^5 a^{-3} -13 z^5 a^{-5} +4 z^5 a^{-7} +15 a^2 z^4+39 z^4 a^{-2} +2 z^4 a^{-4} -7 z^4 a^{-6} +z^4 a^{-8} +44 z^4+3 a^3 z^3+9 a z^3+18 z^3 a^{-1} +19 z^3 a^{-3} +5 z^3 a^{-5} -2 z^3 a^{-7} -5 a^2 z^2-9 z^2 a^{-2} +z^2 a^{-4} +2 z^2 a^{-6} -13 z^2-a^3 z-4 a z-6 z a^{-1} -4 z a^{-3} -z a^{-5} +1 }[/math]
The A2 invariant [math]\displaystyle{ -q^{12}+q^{10}+q^8-q^6+3 q^4-3 q^2+1+ q^{-2} -2 q^{-4} +5 q^{-6} -3 q^{-8} +3 q^{-10} - q^{-12} -2 q^{-14} +2 q^{-16} -2 q^{-18} + q^{-20} }[/math]
The G2 invariant [math]\displaystyle{ q^{60}-3 q^{58}+9 q^{56}-19 q^{54}+28 q^{52}-32 q^{50}+15 q^{48}+29 q^{46}-92 q^{44}+157 q^{42}-186 q^{40}+140 q^{38}-15 q^{36}-174 q^{34}+360 q^{32}-449 q^{30}+392 q^{28}-169 q^{26}-152 q^{24}+452 q^{22}-607 q^{20}+545 q^{18}-277 q^{16}-87 q^{14}+395 q^{12}-526 q^{10}+425 q^8-144 q^6-183 q^4+416 q^2-444+250 q^{-2} +81 q^{-4} -420 q^{-6} +618 q^{-8} -586 q^{-10} +326 q^{-12} +84 q^{-14} -495 q^{-16} +758 q^{-18} -764 q^{-20} +514 q^{-22} -89 q^{-24} -345 q^{-26} +628 q^{-28} -662 q^{-30} +448 q^{-32} -89 q^{-34} -249 q^{-36} +431 q^{-38} -389 q^{-40} +158 q^{-42} +136 q^{-44} -356 q^{-46} +405 q^{-48} -270 q^{-50} +10 q^{-52} +254 q^{-54} -425 q^{-56} +448 q^{-58} -321 q^{-60} +111 q^{-62} +110 q^{-64} -276 q^{-66} +338 q^{-68} -310 q^{-70} +215 q^{-72} -84 q^{-74} -35 q^{-76} +125 q^{-78} -169 q^{-80} +165 q^{-82} -127 q^{-84} +72 q^{-86} -16 q^{-88} -29 q^{-90} +53 q^{-92} -62 q^{-94} +51 q^{-96} -31 q^{-98} +15 q^{-100} + q^{-102} -8 q^{-104} +10 q^{-106} -10 q^{-108} +6 q^{-110} -3 q^{-112} + q^{-114} }[/math]

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {K11a282,}

Same Jones Polynomial (up to mirroring, [math]\displaystyle{ q\leftrightarrow q^{-1} }[/math]): {K11a282,}

Vassiliev invariants

V2 and V3: (0, 0)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9
[math]\displaystyle{ 0 }[/math] [math]\displaystyle{ 0 }[/math] [math]\displaystyle{ 0 }[/math] [math]\displaystyle{ 0 }[/math] [math]\displaystyle{ 0 }[/math] [math]\displaystyle{ 0 }[/math] [math]\displaystyle{ 32 }[/math] [math]\displaystyle{ 32 }[/math] [math]\displaystyle{ 0 }[/math] [math]\displaystyle{ 0 }[/math] [math]\displaystyle{ 0 }[/math] [math]\displaystyle{ 0 }[/math] [math]\displaystyle{ 0 }[/math] [math]\displaystyle{ 32 }[/math] [math]\displaystyle{ 176 }[/math] [math]\displaystyle{ -160 }[/math] [math]\displaystyle{ 16 }[/math] [math]\displaystyle{ -48 }[/math]

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). The squares with yellow highlighting are those on the "critical diagonals", where [math]\displaystyle{ j-2r=s+1 }[/math] or [math]\displaystyle{ j-2r=s-1 }[/math], where [math]\displaystyle{ s= }[/math]2 is the signature of K11a81. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-5-4-3-2-10123456χ
15           11
13          3 -3
11         51 4
9        83  -5
7       105   5
5      108    -2
3     1010     0
1    811      3
-1   59       -4
-3  38        5
-5 15         -4
-7 3          3
-91           -1
Integral Khovanov Homology

(db, data source)

  
[math]\displaystyle{ \dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} }[/math] [math]\displaystyle{ i=1 }[/math] [math]\displaystyle{ i=3 }[/math]
[math]\displaystyle{ r=-5 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-4 }[/math] [math]\displaystyle{ {\mathbb Z}^{3}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-3 }[/math] [math]\displaystyle{ {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{3} }[/math] [math]\displaystyle{ {\mathbb Z}^{3} }[/math]
[math]\displaystyle{ r=-2 }[/math] [math]\displaystyle{ {\mathbb Z}^{8}\oplus{\mathbb Z}_2^{5} }[/math] [math]\displaystyle{ {\mathbb Z}^{5} }[/math]
[math]\displaystyle{ r=-1 }[/math] [math]\displaystyle{ {\mathbb Z}^{9}\oplus{\mathbb Z}_2^{8} }[/math] [math]\displaystyle{ {\mathbb Z}^{8} }[/math]
[math]\displaystyle{ r=0 }[/math] [math]\displaystyle{ {\mathbb Z}^{11}\oplus{\mathbb Z}_2^{9} }[/math] [math]\displaystyle{ {\mathbb Z}^{10} }[/math]
[math]\displaystyle{ r=1 }[/math] [math]\displaystyle{ {\mathbb Z}^{10}\oplus{\mathbb Z}_2^{10} }[/math] [math]\displaystyle{ {\mathbb Z}^{10} }[/math]
[math]\displaystyle{ r=2 }[/math] [math]\displaystyle{ {\mathbb Z}^{8}\oplus{\mathbb Z}_2^{10} }[/math] [math]\displaystyle{ {\mathbb Z}^{10} }[/math]
[math]\displaystyle{ r=3 }[/math] [math]\displaystyle{ {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{8} }[/math] [math]\displaystyle{ {\mathbb Z}^{8} }[/math]
[math]\displaystyle{ r=4 }[/math] [math]\displaystyle{ {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{5} }[/math] [math]\displaystyle{ {\mathbb Z}^{5} }[/math]
[math]\displaystyle{ r=5 }[/math] [math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2^{3} }[/math] [math]\displaystyle{ {\mathbb Z}^{3} }[/math]
[math]\displaystyle{ r=6 }[/math] [math]\displaystyle{ {\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages.

See/edit the Hoste-Thistlethwaite Knot Page master template (intermediate).

See/edit the Hoste-Thistlethwaite_Splice_Base (expert).

Back to the top.

K11a80.gif

K11a80

K11a82.gif

K11a82