Identifying Knots within a List

From Knot Atlas
Revision as of 08:17, 25 October 2007 by IvaH (talk | contribs) (New page: {{Manual TOC Sidebar}} ==IdentifyWithin== IdentifyWithin[L,H] returns those elements from the list of knots H, whose invariant matches that of the knot L. It can also recognize mirrors a...)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigationJump to search


IdentifyWithin

IdentifyWithin[L,H] returns those elements from the list of knots H, whose invariant matches that of the knot L. It can also recognize mirrors and connected sums of the knots in the list. Its options include turning off (on) the search for connected sums with ConnectedSum->False (True) and choosing the invariants to be used in identification by selecting, for example, Invariants->{Jones[#][q]&, HOMFLYPT[#][a,z]&}. IdentifyWithin can be used together with SubLink to determine the components of a link. For the second component of link L11n150, for instance, we get:

(For In[1] see Setup)

In[2]:= IdentifyWithin[SubLink[Link["L11n150"], 2], AllKnots[]]
Out[2]= {Knot[5, 2]}


L11n150.gif
L11n150
5 2.gif
5_2


Unfortunately, the program does not provide absolute identification when all the used invariants cannot distinguish between two or more different knots. In that case, a list of possible candidates for L is returned.

In[3]:= Options[IdentifyWithin] = { Invariants -> {Jones[#][q] &, HOMFLYPT[#][a, z] &, Kauffman[#][a, z] &}, ConnectedSum -> "True"}; IdentifyWithin[L_, H_List, opts___Rule] := Module[ {div, j = 1, l, i = 1, u, mu, t, mt, out = {}, out1 = {}, nk, mnk, mnk1, p, mp, m, p1, invariants = (Invariants /. {opts} /. Options[IdentifyWithin]), connectedsum = (ConnectedSum /. {opts} /. Options[IdentifyWithin])}, NormalizeP[poly_] := Module[{t1, i1}, (For[i1 = 1 ; t1 := FactorList[poly], i1 <= Length[Variables[poly]], i1++, t1 = DeleteCases[t1, {Variables[poly][[i1]], _Integer} | {1, 1}]]; Times @@ Power @@@ t1 )]; l := Length[invariants]; u[0] = mu[0] = H; While[i <= l && ! Length[out] === 1, t[i] = invariants[[i]][L]; mt[i] = invariants[[i]][Mirror[L]]; u[i] = Select[u[i - 1], t[i] == invariants[[i]][#] &]; mu[i] = Select[mu[i - 1], mt[i] == invariants[[i]][#] &]; out = Flatten[{u[i], Mirror /@ mu[i]}]; i++]; Which[ Length[out] >= 2, DeleteCases[out, Mirror[Knot[0, 1]]], Length[out] == 1, out = If[u[i - 1] != {}, u[i - 1], Mirror /@ mu[i - 1]], connectedsum === "True", i = 1; nk[0] = mnk[0] = H; While[Length[out1] != 1 && i <= l, p[i] = NormalizeP[t[i]]; mp[i] = NormalizeP[mt[i]]; nk[i] = Select[nk[i - 1], (p1 = NormalizeP[invariants[[i]][#]]; z = 3; PolynomialRemainder[p[i], p1, Variables[p[i]][[1]]] === 0 ) &]; mnk[i] = Select[mnk[i - 1], (p1 = NormalizeP[invariants[[i]][#]]; z = 3; PolynomialRemainder[mp[i], p1, Variables[p[i]][[1]]] === 0 ) &]; Clear[z]; mnk1[i] = Mirror /@ mnk[i]; div = Flatten[{nk[i], mnk1[i]}]; div = DeleteCases[div, Knot[0, 1] | Mirror[Knot[0, 1]]]; If[div == {}, out1 = {}, For[m = 1; W[0] = CS[0] = Select[ Flatten /@ Flatten[Outer[List, div, div, 1], 1], OrderedQ], Length[W[m - 1][[1]]] < 4, m++, W[m] = Select[ Flatten /@ Flatten[Outer[List, div, W[m - 1], 1], 1], OrderedQ]; CS[m] = Flatten[{CS[m - 1], W[m]}, 1]; ]; out1 = Select[CS[m - 1], Expand[Times @@ invariants[[i]] /@ #] == t[i] &]; ]; i++]; If[out1 == {}, {}, ConnectedSum @@@ out1], True, {} ] ];