(For In[1] see Setup)
In[1]:=
|
?NumberOfKnots
|
NumberOfKnots[n] returns the number of knots with n crossings.
NumberOfKnots[n, Alternating|NonAlternating] returns the number of knots of the specified type.
|
|
In[2]:=
|
NumberOfKnots[16, NonAlternating]
|
Out[2]=
|
1008906
|
In[3]:=
|
?AlternatingQ
|
AlternatingQ[D] returns True iff the knot/link diagram D is alternating.
|
|
Among the knots with up to 11 crossings, 564 are alternating and 238 are not:
In[4]:=
|
Total[AlternatingQ /@ AllKnots[{0,11}]]
|
Out[4]=
|
239 False + 563 True
|