The A2 Invariant
From Knot Atlas
Jump to navigationJump to search
We compute the (or quantum ) invariant using the normalization and formulas of [Khovanov], which in itself follows [Kuperberg]:
(For In[1] see Setup)
|
As an example, let us check that the knots 10_22 and 10_35 have the same Jones polynomial but different invariants:
In[2]:=
|
Jones[Knot[10, 22]][q] == Jones[Knot[10, 35]][q]
|
Out[2]=
|
True
|
In[3]:=
|
A2Invariant[Knot[10, 22]][q]
|
Out[3]=
|
-12 -8 -6 -4 2 4 6 8 10 12 14
-1 + q + q + q - q + -- - q - 2 q + q - q + q + q +
2
q
18
q
|
In[4]:=
|
A2Invariant[Knot[10, 35]][q]
|
Out[4]=
|
-14 -12 -10 -8 2 2 2 6 8 10 14 16
q + q - q + q - -- + -- + q - q + q - 2 q + q - q +
4 2
q q
18 20
q + q
|
The invariant attains 2163 values on the 2226 knots and links known to KnotTheory
:
In[5]:=
|
all = Join[AllKnots[], AllLinks[]];
|
In[6]:=
|
Length /@ {Union[A2Invariant[#][q]& /@ all], all}
|
Out[6]=
|
{2163, 2226}
|
[Khovanov] ^ M. Khovanov, link homology I, arXiv:math.QA/0304375.
[Kuperberg] ^ G. Kuperberg, Spiders for rank 2 Lie algebras, Comm. Math. Phys. 180 (1996) 109-151, arXiv:q-alg/9712003.