9 6

From Knot Atlas
Revision as of 20:46, 27 August 2005 by ScottTestRobot (talk | contribs)
Jump to navigationJump to search


9 5.gif

9_5

9 7.gif

9_7

9 6.gif Visit 9 6's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit 9 6's page at Knotilus!

Visit 9 6's page at the original Knot Atlas!

9 6 Quick Notes


9 6 Further Notes and Views

Knot presentations

Planar diagram presentation X1425 X3,12,4,13 X5,14,6,15 X7,16,8,17 X9,18,10,1 X15,6,16,7 X17,8,18,9 X13,10,14,11 X11,2,12,3
Gauss code -1, 9, -2, 1, -3, 6, -4, 7, -5, 8, -9, 2, -8, 3, -6, 4, -7, 5
Dowker-Thistlethwaite code 4 12 14 16 18 2 10 6 8
Conway Notation [522]

Three dimensional invariants

Symmetry type Reversible
Unknotting number 3
3-genus 3
Bridge index 2
Super bridge index
Nakanishi index 1
Maximal Thurston-Bennequin number [-16][5]
Hyperbolic Volume 7.2036
A-Polynomial See Data:9 6/A-polynomial

[edit Notes for 9 6's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus
Topological 4 genus
Concordance genus
Rasmussen s-Invariant -6

[edit Notes for 9 6's four dimensional invariants]

Polynomial invariants

Alexander polynomial
Conway polynomial
2nd Alexander ideal (db, data sources)
Determinant and Signature { 27, -6 }
Jones polynomial
HOMFLY-PT polynomial (db, data sources)
Kauffman polynomial (db, data sources)
The A2 invariant
The G2 invariant

Vassiliev invariants

V2 and V3: (7, -18)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where -6 is the signature of 9 6. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.

\ r
  \  
j \
-9-8-7-6-5-4-3-2-10χ
-5         11
-7        110
-9       2  2
-11      11  0
-13     32   1
-15    21    -1
-17   23     -1
-19  12      1
-21 12       -1
-23 1        1
-251         -1

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 17, 2005, 14:44:34)...
In[2]:=
Crossings[Knot[9, 6]]
Out[2]=  
9
In[3]:=
PD[Knot[9, 6]]
Out[3]=  
PD[X[1, 4, 2, 5], X[3, 12, 4, 13], X[5, 14, 6, 15], X[7, 16, 8, 17], 
 X[9, 18, 10, 1], X[15, 6, 16, 7], X[17, 8, 18, 9], X[13, 10, 14, 11], 

X[11, 2, 12, 3]]
In[4]:=
GaussCode[Knot[9, 6]]
Out[4]=  
GaussCode[-1, 9, -2, 1, -3, 6, -4, 7, -5, 8, -9, 2, -8, 3, -6, 4, -7, 5]
In[5]:=
BR[Knot[9, 6]]
Out[5]=  
BR[3, {-1, -1, -1, -1, -1, -1, -2, 1, -2, -2}]
In[6]:=
alex = Alexander[Knot[9, 6]][t]
Out[6]=  
     2    4    5            2      3

-5 + -- - -- + - + 5 t - 4 t + 2 t

     3    2   t
t t
In[7]:=
Conway[Knot[9, 6]][z]
Out[7]=  
       2      4      6
1 + 7 z  + 8 z  + 2 z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=  
{Knot[9, 6]}
In[9]:=
{KnotDet[Knot[9, 6]], KnotSignature[Knot[9, 6]]}
Out[9]=  
{27, -6}
In[10]:=
J=Jones[Knot[9, 6]][q]
Out[10]=  
  -12    2     3    4    5    4    3    3     -4    -3

-q + --- - --- + -- - -- + -- - -- + -- - q + q

        11    10    9    8    7    6    5
q q q q q q q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=  
{Knot[9, 6]}
In[12]:=
A2Invariant[Knot[9, 6]][q]
Out[12]=  
  -36    2     -22    -20    2     -16    2     -10

-q - --- - q + q + --- + q + --- + q

        26                  18           14
q q q
In[13]:=
Kauffman[Knot[9, 6]][a, z]
Out[13]=  
    6    8    10      7      9        11      15        6  2    8  2

-3 a - a + a + 2 a z - a z - 2 a z - a z + 7 a z + a z -

    10  2    12  2      14  2      9  3      11  3    13  3    15  3
 3 a   z  + a   z  - 2 a   z  + 8 a  z  + 6 a   z  - a   z  + a   z  - 

    6  4    8  4      10  4      12  4      14  4      7  5
 5 a  z  + a  z  + 2 a   z  - 2 a   z  + 2 a   z  - 3 a  z  - 

     9  5      11  5      13  5    6  6      8  6      10  6
 10 a  z  - 5 a   z  + 2 a   z  + a  z  - 3 a  z  - 2 a   z  + 

    12  6    7  7      9  7      11  7    8  8    10  8
2 a z + a z + 3 a z + 2 a z + a z + a z
In[14]:=
{Vassiliev[2][Knot[9, 6]], Vassiliev[3][Knot[9, 6]]}
Out[14]=  
{0, -18}
In[15]:=
Kh[Knot[9, 6]][q, t]
Out[15]=  
 -7    -5     1        1        1        2        1        2

q + q + ------ + ------ + ------ + ------ + ------ + ------ +

            25  9    23  8    21  8    21  7    19  7    19  6
           q   t    q   t    q   t    q   t    q   t    q   t

   2        3        2        1        3        2        1
 ------ + ------ + ------ + ------ + ------ + ------ + ------ + 
  17  6    17  5    15  5    15  4    13  4    13  3    11  3
 q   t    q   t    q   t    q   t    q   t    q   t    q   t

   1        2      1
 ------ + ----- + ----
  11  2    9  2    7
q t q t q t