9 32

From Knot Atlas
Revision as of 21:49, 27 August 2005 by ScottTestRobot (talk | contribs)
Jump to navigationJump to search


9 31.gif

9_31

9 33.gif

9_33

9 32.gif Visit 9 32's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit 9 32's page at Knotilus!

Visit 9 32's page at the original Knot Atlas!

9 32 Quick Notes


9 32 Further Notes and Views

Knot presentations

Planar diagram presentation X1425 X13,18,14,1 X3948 X9,3,10,2 X7,15,8,14 X15,11,16,10 X5,12,6,13 X11,17,12,16 X17,7,18,6
Gauss code -1, 4, -3, 1, -7, 9, -5, 3, -4, 6, -8, 7, -2, 5, -6, 8, -9, 2
Dowker-Thistlethwaite code 4 8 12 14 2 16 18 10 6
Conway Notation [.21.20]

Three dimensional invariants

Symmetry type Chiral
Unknotting number 2
3-genus 3
Bridge index 3
Super bridge index Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \{4,6\}}
Nakanishi index 1
Maximal Thurston-Bennequin number [-2][-9]
Hyperbolic Volume 13.0999
A-Polynomial See Data:9 32/A-polynomial

[edit Notes for 9 32's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 1}
Topological 4 genus Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 1}
Concordance genus Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 3}
Rasmussen s-Invariant 2

[edit Notes for 9 32's four dimensional invariants]

Polynomial invariants

Alexander polynomial Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^3-6 t^2+14 t-17+14 t^{-1} -6 t^{-2} + t^{-3} }
Conway polynomial Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^6-z^2+1}
2nd Alexander ideal (db, data sources) Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \{1\}}
Determinant and Signature { 59, 2 }
Jones polynomial
HOMFLY-PT polynomial (db, data sources) Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^6 a^{-2} +3 z^4 a^{-2} -2 z^4 a^{-4} -z^4+3 z^2 a^{-2} -4 z^2 a^{-4} +z^2 a^{-6} -z^2+ a^{-2} -2 a^{-4} + a^{-6} +1}
Kauffman polynomial (db, data sources) Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2 z^8 a^{-2} +2 z^8 a^{-4} +5 z^7 a^{-1} +10 z^7 a^{-3} +5 z^7 a^{-5} +6 z^6 a^{-2} +7 z^6 a^{-4} +5 z^6 a^{-6} +4 z^6+a z^5-9 z^5 a^{-1} -18 z^5 a^{-3} -5 z^5 a^{-5} +3 z^5 a^{-7} -19 z^4 a^{-2} -18 z^4 a^{-4} -6 z^4 a^{-6} +z^4 a^{-8} -8 z^4-a z^3+3 z^3 a^{-1} +9 z^3 a^{-3} +2 z^3 a^{-5} -3 z^3 a^{-7} +10 z^2 a^{-2} +12 z^2 a^{-4} +4 z^2 a^{-6} -z^2 a^{-8} +3 z^2-z a^{-1} -2 z a^{-3} +z a^{-7} - a^{-2} -2 a^{-4} - a^{-6} +1}
The A2 invariant Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^6+2 q^4+1+3 q^{-2} -2 q^{-4} +2 q^{-6} -2 q^{-8} -2 q^{-14} +2 q^{-16} - q^{-18} + q^{-22} }
The G2 invariant Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{32}-3 q^{30}+7 q^{28}-13 q^{26}+13 q^{24}-9 q^{22}-6 q^{20}+30 q^{18}-50 q^{16}+66 q^{14}-56 q^{12}+17 q^{10}+39 q^8-93 q^6+126 q^4-112 q^2+58+22 q^{-2} -92 q^{-4} +126 q^{-6} -106 q^{-8} +48 q^{-10} +29 q^{-12} -83 q^{-14} +89 q^{-16} -47 q^{-18} -23 q^{-20} +92 q^{-22} -122 q^{-24} +101 q^{-26} -35 q^{-28} -53 q^{-30} +131 q^{-32} -173 q^{-34} +158 q^{-36} -91 q^{-38} -6 q^{-40} +98 q^{-42} -157 q^{-44} +157 q^{-46} -103 q^{-48} +19 q^{-50} +58 q^{-52} -102 q^{-54} +89 q^{-56} -33 q^{-58} -39 q^{-60} +90 q^{-62} -94 q^{-64} +49 q^{-66} +22 q^{-68} -90 q^{-70} +125 q^{-72} -111 q^{-74} +63 q^{-76} + q^{-78} -59 q^{-80} +88 q^{-82} -86 q^{-84} +64 q^{-86} -26 q^{-88} -5 q^{-90} +25 q^{-92} -33 q^{-94} +30 q^{-96} -21 q^{-98} +12 q^{-100} -2 q^{-102} -4 q^{-104} +5 q^{-106} -6 q^{-108} +4 q^{-110} -2 q^{-112} + q^{-114} }

Vassiliev invariants

V2 and V3: (-1, -2)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -4} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -\frac{62}{3}} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{14}{3}} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 64} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{224}{3}} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -\frac{32}{3}} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 128} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{248}{3}} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -\frac{56}{3}} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{74}{5}} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{9778}{45}} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{689}{30}}

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^rq^j} are shown, along with their alternating sums Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \chi} (fixed Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j} , alternation over Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r} ). The squares with yellow highlighting are those on the "critical diagonals", where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j-2r=s+1} or , where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s=} 2 is the signature of 9 32. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.

\ r
  \  
j \
-3-2-10123456χ
15         11
13        2 -2
11       41 3
9      52  -3
7     54   1
5    55    0
3   45     -1
1  36      3
-1 13       -2
-3 3        3
-51         -1

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \textrm{Include}(\textrm{ColouredJonesM.mhtml})}

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 17, 2005, 14:44:34)...
In[2]:=
Crossings[Knot[9, 32]]
Out[2]=  
9
In[3]:=
PD[Knot[9, 32]]
Out[3]=  
PD[X[1, 4, 2, 5], X[13, 18, 14, 1], X[3, 9, 4, 8], X[9, 3, 10, 2], 
 X[7, 15, 8, 14], X[15, 11, 16, 10], X[5, 12, 6, 13], 

X[11, 17, 12, 16], X[17, 7, 18, 6]]
In[4]:=
GaussCode[Knot[9, 32]]
Out[4]=  
GaussCode[-1, 4, -3, 1, -7, 9, -5, 3, -4, 6, -8, 7, -2, 5, -6, 8, -9, 2]
In[5]:=
BR[Knot[9, 32]]
Out[5]=  
BR[4, {1, 1, -2, 1, -2, 1, 3, -2, 3}]
In[6]:=
alex = Alexander[Knot[9, 32]][t]
Out[6]=  
       -3   6    14             2    3

-17 + t - -- + -- + 14 t - 6 t + t

            2   t
t
In[7]:=
Conway[Knot[9, 32]][z]
Out[7]=  
     2    6
1 - z  + z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=  
{Knot[9, 32], Knot[11, NonAlternating, 52], 
  Knot[11, NonAlternating, 124]}
In[9]:=
{KnotDet[Knot[9, 32]], KnotSignature[Knot[9, 32]]}
Out[9]=  
{59, 2}
In[10]:=
J=Jones[Knot[9, 32]][q]
Out[10]=  
      -2   4             2       3      4      5      6    7

-6 - q + - + 9 q - 10 q + 10 q - 9 q + 6 q - 3 q + q

q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=  
{Knot[9, 32]}
In[12]:=
A2Invariant[Knot[9, 32]][q]
Out[12]=  
     -6   2       2      4      6      8      14      16    18    22

1 - q + -- + 3 q - 2 q + 2 q - 2 q - 2 q + 2 q - q + q

          4
q
In[13]:=
Kauffman[Knot[9, 32]][a, z]
Out[13]=  
                                            2      2       2       2
    -6   2     -2   z    2 z   z      2   z    4 z    12 z    10 z

1 - a - -- - a + -- - --- - - + 3 z - -- + ---- + ----- + ----- -

          4          7    3    a           8     6      4       2
         a          a    a                a     a      a       a

    3      3      3      3                  4      4       4       4
 3 z    2 z    9 z    3 z       3      4   z    6 z    18 z    19 z
 ---- + ---- + ---- + ---- - a z  - 8 z  + -- - ---- - ----- - ----- + 
   7      5      3     a                    8     6      4       2
  a      a      a                          a     a      a       a

    5      5       5      5                    6      6      6
 3 z    5 z    18 z    9 z       5      6   5 z    7 z    6 z
 ---- - ---- - ----- - ---- + a z  + 4 z  + ---- + ---- + ---- + 
   7      5      3      a                     6      4      2
  a      a      a                            a      a      a

    7       7      7      8      8
 5 z    10 z    5 z    2 z    2 z
 ---- + ----- + ---- + ---- + ----
   5      3      a       4      2
a a a a
In[14]:=
{Vassiliev[2][Knot[9, 32]], Vassiliev[3][Knot[9, 32]]}
Out[14]=  
{0, -2}
In[15]:=
Kh[Knot[9, 32]][q, t]
Out[15]=  
         3     1       3      1      3    3 q      3        5

6 q + 4 q + ----- + ----- + ---- + --- + --- + 5 q t + 5 q t +

             5  3    3  2      2   q t    t
            q  t    q  t    q t

    5  2      7  2      7  3      9  3      9  4      11  4    11  5
 5 q  t  + 5 q  t  + 4 q  t  + 5 q  t  + 2 q  t  + 4 q   t  + q   t  + 

    13  5    15  6
2 q t + q t