10 39
|
|
Visit 10 39's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)
Visit 10 39's page at Knotilus! Visit 10 39's page at the original Knot Atlas! |
10 39 Quick Notes |
Knot presentations
Planar diagram presentation | X1425 X5,12,6,13 X3,11,4,10 X11,3,12,2 X7,14,8,15 X9,18,10,19 X15,20,16,1 X19,16,20,17 X13,6,14,7 X17,8,18,9 |
Gauss code | -1, 4, -3, 1, -2, 9, -5, 10, -6, 3, -4, 2, -9, 5, -7, 8, -10, 6, -8, 7 |
Dowker-Thistlethwaite code | 4 10 12 14 18 2 6 20 8 16 |
Conway Notation | [22312] |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
A1 Invariants.
Weight | Invariant |
---|---|
1 | |
2 | |
3 | |
4 | |
5 |
A2 Invariants.
Weight | Invariant |
---|---|
1,0 | |
1,1 | |
2,0 |
A3 Invariants.
Weight | Invariant |
---|---|
0,1,0 | |
1,0,0 |
A4 Invariants.
Weight | Invariant |
---|---|
0,1,0,0 | |
1,0,0,0 |
B2 Invariants.
Weight | Invariant |
---|---|
0,1 | |
1,0 |
D4 Invariants.
Weight | Invariant |
---|---|
1,0,0,0 |
G2 Invariants.
Weight | Invariant |
---|---|
1,0 |
.
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["10 39"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 61, -4 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
Vassiliev invariants
V2 and V3: | (1, -1) |
V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where -4 is the signature of 10 39. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.
|
-8 | -7 | -6 | -5 | -4 | -3 | -2 | -1 | 0 | 1 | 2 | χ | |||||||||
1 | 1 | 1 | |||||||||||||||||||
-1 | 1 | -1 | |||||||||||||||||||
-3 | 4 | 1 | 3 | ||||||||||||||||||
-5 | 4 | 2 | -2 | ||||||||||||||||||
-7 | 5 | 3 | 2 | ||||||||||||||||||
-9 | 5 | 4 | -1 | ||||||||||||||||||
-11 | 5 | 5 | 0 | ||||||||||||||||||
-13 | 3 | 5 | 2 | ||||||||||||||||||
-15 | 2 | 5 | -3 | ||||||||||||||||||
-17 | 1 | 3 | 2 | ||||||||||||||||||
-19 | 2 | -2 | |||||||||||||||||||
-21 | 1 | 1 |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session.
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 17, 2005, 14:44:34)... | |
In[2]:= | Crossings[Knot[10, 39]] |
Out[2]= | 10 |
In[3]:= | PD[Knot[10, 39]] |
Out[3]= | PD[X[1, 4, 2, 5], X[5, 12, 6, 13], X[3, 11, 4, 10], X[11, 3, 12, 2],X[7, 14, 8, 15], X[9, 18, 10, 19], X[15, 20, 16, 1],X[19, 16, 20, 17], X[13, 6, 14, 7], X[17, 8, 18, 9]] |
In[4]:= | GaussCode[Knot[10, 39]] |
Out[4]= | GaussCode[-1, 4, -3, 1, -2, 9, -5, 10, -6, 3, -4, 2, -9, 5, -7, 8, -10, 6, -8, 7] |
In[5]:= | BR[Knot[10, 39]] |
Out[5]= | BR[4, {-1, -1, -1, -2, 1, -2, -2, -2, 3, -2, 3}] |
In[6]:= | alex = Alexander[Knot[10, 39]][t] |
Out[6]= | 2 8 13 2 3 |
In[7]:= | Conway[Knot[10, 39]][z] |
Out[7]= | 2 4 6 1 + z - 4 z - 2 z |
In[8]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[8]= | {Knot[10, 39]} |
In[9]:= | {KnotDet[Knot[10, 39]], KnotSignature[Knot[10, 39]]} |
Out[9]= | {61, -4} |
In[10]:= | J=Jones[Knot[10, 39]][q] |
Out[10]= | -10 3 5 8 10 10 9 7 5 2 |
In[11]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[11]= | {Knot[10, 39]} |
In[12]:= | A2Invariant[Knot[10, 39]][q] |
Out[12]= | -30 -28 2 2 -18 -16 2 2 -8 2 -4 |
In[13]:= | Kauffman[Knot[10, 39]][a, z] |
Out[13]= | 2 4 5 9 11 2 2 4 2 6 2 |
In[14]:= | {Vassiliev[2][Knot[10, 39]], Vassiliev[3][Knot[10, 39]]} |
Out[14]= | {0, -1} |
In[15]:= | Kh[Knot[10, 39]][q, t] |
Out[15]= | 2 4 1 2 1 3 2 5 |