9 8

From Knot Atlas
Revision as of 20:51, 27 August 2005 by ScottTestRobot (talk | contribs)
Jump to navigationJump to search


9 7.gif

9_7

9 9.gif

9_9

9 8.gif Visit 9 8's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit 9 8's page at Knotilus!

Visit 9 8's page at the original Knot Atlas!

9 8 Quick Notes


9 8 Further Notes and Views

Knot presentations

Planar diagram presentation X1425 X3849 X5,14,6,15 X9,1,10,18 X11,17,12,16 X15,13,16,12 X17,11,18,10 X13,6,14,7 X7283
Gauss code -1, 9, -2, 1, -3, 8, -9, 2, -4, 7, -5, 6, -8, 3, -6, 5, -7, 4
Dowker-Thistlethwaite code 4 8 14 2 18 16 6 12 10
Conway Notation [2412]

Three dimensional invariants

Symmetry type Reversible
Unknotting number 2
3-genus 2
Bridge index 2
Super bridge index
Nakanishi index 1
Maximal Thurston-Bennequin number [-8][-3]
Hyperbolic Volume 8.19235
A-Polynomial See Data:9 8/A-polynomial

[edit Notes for 9 8's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus
Topological 4 genus
Concordance genus
Rasmussen s-Invariant -2

[edit Notes for 9 8's four dimensional invariants]

Polynomial invariants

Alexander polynomial
Conway polynomial
2nd Alexander ideal (db, data sources)
Determinant and Signature { 31, -2 }
Jones polynomial
HOMFLY-PT polynomial (db, data sources)
Kauffman polynomial (db, data sources)
The A2 invariant
The G2 invariant

Vassiliev invariants

V2 and V3: (0, -2)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where -2 is the signature of 9 8. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.

\ r
  \  
j \
-5-4-3-2-101234χ
7         11
5        1 -1
3       21 1
1      21  -1
-1     32   1
-3    33    0
-5   22     0
-7  13      2
-9 12       -1
-11 1        1
-131         -1

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 17, 2005, 14:44:34)...
In[2]:=
Crossings[Knot[9, 8]]
Out[2]=  
9
In[3]:=
PD[Knot[9, 8]]
Out[3]=  
PD[X[1, 4, 2, 5], X[3, 8, 4, 9], X[5, 14, 6, 15], X[9, 1, 10, 18], 
 X[11, 17, 12, 16], X[15, 13, 16, 12], X[17, 11, 18, 10], 

X[13, 6, 14, 7], X[7, 2, 8, 3]]
In[4]:=
GaussCode[Knot[9, 8]]
Out[4]=  
GaussCode[-1, 9, -2, 1, -3, 8, -9, 2, -4, 7, -5, 6, -8, 3, -6, 5, -7, 4]
In[5]:=
BR[Knot[9, 8]]
Out[5]=  
BR[5, {-1, -1, 2, -1, 2, 3, -2, -4, 3, -4}]
In[6]:=
alex = Alexander[Knot[9, 8]][t]
Out[6]=  
      2    8            2

-11 - -- + - + 8 t - 2 t

      2   t
t
In[7]:=
Conway[Knot[9, 8]][z]
Out[7]=  
       4
1 - 2 z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=  
{Knot[8, 14], Knot[9, 8], Knot[10, 131]}
In[9]:=
{KnotDet[Knot[9, 8]], KnotSignature[Knot[9, 8]]}
Out[9]=  
{31, -2}
In[10]:=
J=Jones[Knot[9, 8]][q]
Out[10]=  
      -6   2    3    5    5    5            2    3

-4 - q + -- - -- + -- - -- + - + 3 q - 2 q + q

           5    4    3    2   q
q q q q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=  
{Knot[9, 8], Knot[11, NonAlternating, 60]}
In[12]:=
A2Invariant[Knot[9, 8]][q]
Out[12]=  
  -20    -18    -16    -12    2     -6    -4    2    4    10

-q - q + q + q + --- + q - q - q + q + q

                             10
q
In[13]:=
Kauffman[Knot[9, 8]][a, z]
Out[13]=  
                                                                    2
     -2      4    6   2 z            3      5      7        2   4 z

-1 - a + 2 a + a - --- - 3 a z - a z - a z - a z + 7 z + ---- +

                       a                                          2
                                                                 a

                                  3
    2  2      4  2      6  2   8 z          3      3  3    7  3
 2 a  z  - 3 a  z  - 2 a  z  + ---- + 11 a z  + 2 a  z  + a  z  - 
                                a

           4                          5
    4   4 z       2  4      6  4   8 z          5      3  5
 6 z  - ---- - 4 a  z  + 2 a  z  - ---- - 13 a z  - 3 a  z  + 
          2                         a
         a

                 6                7
    5  5    6   z       4  6   2 z         7      3  7    8    2  8
 2 a  z  - z  + -- + 2 a  z  + ---- + 4 a z  + 2 a  z  + z  + a  z
                 2              a
a
In[14]:=
{Vassiliev[2][Knot[9, 8]], Vassiliev[3][Knot[9, 8]]}
Out[14]=  
{0, -2}
In[15]:=
Kh[Knot[9, 8]][q, t]
Out[15]=  
3    3     1        1        1       2       1       3       2

-- + - + ------ + ------ + ----- + ----- + ----- + ----- + ----- +

3   q    13  5    11  4    9  4    9  3    7  3    7  2    5  2

q q t q t q t q t q t q t q t

  2      3     2 t              2      3  2    3  3    5  3    7  4
 ---- + ---- + --- + 2 q t + q t  + 2 q  t  + q  t  + q  t  + q  t
  5      3      q
q t q t