9 42
|
|
|
|
Visit 9 42's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)
Visit 9 42's page at Knotilus! Visit 9 42's page at the original Knot Atlas! |
9 42 Quick Notes |
9_42 is Alexander Stoimenow's favourite knot!
Knot presentations
| Planar diagram presentation | X1425 X5,10,6,11 X3948 X9,3,10,2 X16,12,17,11 X14,7,15,8 X6,15,7,16 X18,14,1,13 X12,18,13,17 |
| Gauss code | -1, 4, -3, 1, -2, -7, 6, 3, -4, 2, 5, -9, 8, -6, 7, -5, 9, -8 |
| Dowker-Thistlethwaite code | 4 8 10 -14 2 -16 -18 -6 -12 |
| Conway Notation | [22,3,2-] |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
| Alexander polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -t^2+2 t-1+2 t^{-1} - t^{-2} } |
| Conway polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -z^4-2 z^2+1} |
| 2nd Alexander ideal (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \{1\}} |
| Determinant and Signature | { 7, 2 } |
| Jones polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^3-q^2+q-1+ q^{-1} - q^{-2} + q^{-3} } |
| HOMFLY-PT polynomial (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -z^4+a^2 z^2+z^2 a^{-2} -4 z^2+2 a^2+2 a^{-2} -3} |
| Kauffman polynomial (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a z^7+z^7 a^{-1} +a^2 z^6+z^6 a^{-2} +2 z^6-5 a z^5-5 z^5 a^{-1} -5 a^2 z^4-5 z^4 a^{-2} -10 z^4+6 a z^3+6 z^3 a^{-1} +6 a^2 z^2+6 z^2 a^{-2} +12 z^2-2 a z-2 z a^{-1} -2 a^2-2 a^{-2} -3} |
| The A2 invariant | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{10}+q^8+q^6-q^2-1- q^{-2} + q^{-6} + q^{-8} + q^{-10} } |
| The G2 invariant | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{46}+q^{42}+2 q^{32}+q^{26}+q^{24}+q^{22}+q^{20}-q^{18}+q^{16}+q^{14}-q^{12}+q^{10}-q^8-q^4-2 q^2-1- q^{-2} - q^{-4} -2 q^{-6} - q^{-8} - q^{-10} + q^{-12} - q^{-14} - q^{-16} + q^{-20} + q^{-22} + q^{-24} + q^{-26} +3 q^{-30} + q^{-34} + q^{-36} + q^{-40} + q^{-46} - q^{-50} - q^{-54} + q^{-56} - q^{-60} + q^{-62} } |
A1 Invariants.
| Weight | Invariant |
|---|---|
| 1 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^7+ q^{-7} } |
| 2 | |
| 3 | |
| 4 | |
| 5 |
A2 Invariants.
| Weight | Invariant |
|---|---|
| 1,0 | |
| 1,1 | |
| 2,0 |
A3 Invariants.
| Weight | Invariant |
|---|---|
| 0,1,0 | |
| 1,0,0 |
A4 Invariants.
| Weight | Invariant |
|---|---|
| 0,1,0,0 | |
| 1,0,0,0 |
B2 Invariants.
| Weight | Invariant |
|---|---|
| 0,1 | |
| 1,0 |
D4 Invariants.
| Weight | Invariant |
|---|---|
| 1,0,0,0 |
G2 Invariants.
| Weight | Invariant |
|---|---|
| 1,0 |
.
KnotTheory`, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["9 42"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -t^2+2 t-1+2 t^{-1} - t^{-2} } |
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -z^4-2 z^2+1} |
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \{1\}} |
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 7, 2 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^3-q^2+q-1+ q^{-1} - q^{-2} + q^{-3} } |
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -z^4+a^2 z^2+z^2 a^{-2} -4 z^2+2 a^2+2 a^{-2} -3} |
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a z^7+z^7 a^{-1} +a^2 z^6+z^6 a^{-2} +2 z^6-5 a z^5-5 z^5 a^{-1} -5 a^2 z^4-5 z^4 a^{-2} -10 z^4+6 a z^3+6 z^3 a^{-1} +6 a^2 z^2+6 z^2 a^{-2} +12 z^2-2 a z-2 z a^{-1} -2 a^2-2 a^{-2} -3} |
Vassiliev invariants
| V2 and V3: | (-2, 0) |
| V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^rq^j} are shown, along with their alternating sums Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \chi} (fixed Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j} , alternation over Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r} ). The squares with yellow highlighting are those on the "critical diagonals", where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j-2r=s+1} or Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j-2r=s+1} , where 2 is the signature of 9 42. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.
|
-4 | -3 | -2 | -1 | 0 | 1 | 2 | χ | |||||||||
| 7 | 1 | 1 | |||||||||||||||
| 5 | 0 | ||||||||||||||||
| 3 | 1 | 1 | 0 | ||||||||||||||
| 1 | 1 | 1 | 0 | ||||||||||||||
| -1 | 1 | 1 | 0 | ||||||||||||||
| -3 | 1 | 1 | 0 | ||||||||||||||
| -5 | 0 | ||||||||||||||||
| -7 | 1 | 1 |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \textrm{Include}(\textrm{ColouredJonesM.mhtml})}
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 17, 2005, 14:44:34)... | |
In[2]:= | Crossings[Knot[9, 42]] |
Out[2]= | 9 |
In[3]:= | PD[Knot[9, 42]] |
Out[3]= | PD[X[1, 4, 2, 5], X[5, 10, 6, 11], X[3, 9, 4, 8], X[9, 3, 10, 2],X[16, 12, 17, 11], X[14, 7, 15, 8], X[6, 15, 7, 16],X[18, 14, 1, 13], X[12, 18, 13, 17]] |
In[4]:= | GaussCode[Knot[9, 42]] |
Out[4]= | GaussCode[-1, 4, -3, 1, -2, -7, 6, 3, -4, 2, 5, -9, 8, -6, 7, -5, 9, -8] |
In[5]:= | BR[Knot[9, 42]] |
Out[5]= | BR[4, {1, 1, 1, -2, -1, -1, 3, -2, 3}] |
In[6]:= | alex = Alexander[Knot[9, 42]][t] |
Out[6]= | -2 2 2 |
In[7]:= | Conway[Knot[9, 42]][z] |
Out[7]= | 2 4 1 - 2 z - z |
In[8]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[8]= | {Knot[9, 42]} |
In[9]:= | {KnotDet[Knot[9, 42]], KnotSignature[Knot[9, 42]]} |
Out[9]= | {7, 2} |
In[10]:= | J=Jones[Knot[9, 42]][q] |
Out[10]= | -3 -2 1 2 3 |
In[11]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[11]= | {Knot[9, 42]} |
In[12]:= | A2Invariant[Knot[9, 42]][q] |
Out[12]= | -10 -8 -6 -2 2 6 8 10 -1 + q + q + q - q - q + q + q + q |
In[13]:= | Kauffman[Knot[9, 42]][a, z] |
Out[13]= | 2 32 2 2 z 2 6 z 2 2 6 z 3 |
In[14]:= | {Vassiliev[2][Knot[9, 42]], Vassiliev[3][Knot[9, 42]]} |
Out[14]= | {0, 0} |
In[15]:= | Kh[Knot[9, 42]][q, t] |
Out[15]= | 1 3 1 1 1 1 q 3 7 2 |



