10 156
|
|
![]() |
Visit 10 156's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)
Visit 10 156's page at Knotilus! Visit 10 156's page at the original Knot Atlas! |
10 156 Quick Notes |
10 156 Further Notes and Views
Knot presentations
Planar diagram presentation | X4251 X12,4,13,3 X7,14,8,15 X18,9,19,10 X6,19,7,20 X16,5,17,6 X10,17,11,18 X13,8,14,9 X20,15,1,16 X2,12,3,11 |
Gauss code | 1, -10, 2, -1, 6, -5, -3, 8, 4, -7, 10, -2, -8, 3, 9, -6, 7, -4, 5, -9 |
Dowker-Thistlethwaite code | 4 12 16 -14 18 2 -8 20 10 6 |
Conway Notation | [-3:2:20] |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
Alexander polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^3-4 t^2+8 t-9+8 t^{-1} -4 t^{-2} + t^{-3} } |
Conway polynomial | |
2nd Alexander ideal (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \{1\}} |
Determinant and Signature | { 35, -2 } |
Jones polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^2+3 q-4+6 q^{-1} -6 q^{-2} +6 q^{-3} -5 q^{-4} +3 q^{-5} - q^{-6} } |
HOMFLY-PT polynomial (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a^2 z^6-a^4 z^4+4 a^2 z^4-z^4-2 a^4 z^2+5 a^2 z^2-2 z^2-a^4+2 a^2} |
Kauffman polynomial (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a^4 z^8+a^2 z^8+a^5 z^7+4 a^3 z^7+3 a z^7-a^4 z^6+2 a^2 z^6+3 z^6-a^5 z^5-9 a^3 z^5-7 a z^5+z^5 a^{-1} +3 a^6 z^4+2 a^4 z^4-9 a^2 z^4-8 z^4+a^7 z^3+4 a^5 z^3+8 a^3 z^3+3 a z^3-2 z^3 a^{-1} -2 a^6 z^2+a^4 z^2+7 a^2 z^2+4 z^2-a^7 z-2 a^5 z-2 a^3 z-a z-a^4-2 a^2} |
The A2 invariant | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{18}+q^{16}-q^{14}+q^{10}-q^8+2 q^6-q^4+2 q^2+1+ q^{-4} - q^{-6} } |
The G2 invariant | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{100}-q^{98}+q^{96}-2 q^{90}+2 q^{88}+2 q^{86}-6 q^{84}+11 q^{82}-16 q^{80}+10 q^{78}-3 q^{76}-13 q^{74}+29 q^{72}-35 q^{70}+27 q^{68}-8 q^{66}-16 q^{64}+35 q^{62}-36 q^{60}+23 q^{58}-20 q^{54}+28 q^{52}-21 q^{50}+2 q^{48}+21 q^{46}-34 q^{44}+32 q^{42}-18 q^{40}-5 q^{38}+27 q^{36}-42 q^{34}+42 q^{32}-31 q^{30}+11 q^{28}+15 q^{26}-35 q^{24}+44 q^{22}-33 q^{20}+15 q^{18}+10 q^{16}-28 q^{14}+31 q^{12}-16 q^{10}-3 q^8+25 q^6-32 q^4+24 q^2-1-22 q^{-2} +36 q^{-4} -35 q^{-6} +22 q^{-8} -3 q^{-10} -16 q^{-12} +25 q^{-14} -22 q^{-16} +16 q^{-18} -5 q^{-20} -3 q^{-22} +5 q^{-24} -7 q^{-26} +4 q^{-28} -2 q^{-30} + q^{-32} } |
A1 Invariants.
Weight | Invariant |
---|---|
1 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{13}+2 q^{11}-2 q^9+q^7+2 q- q^{-1} +2 q^{-3} - q^{-5} } |
2 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -2 q^{34}+2 q^{32}+5 q^{30}-7 q^{28}-2 q^{26}+10 q^{24}-6 q^{22}-6 q^{20}+8 q^{18}-5 q^{14}+q^{12}+5 q^{10}-3 q^8-5 q^6+8 q^4+2 q^2-8+6 q^{-2} +6 q^{-4} -8 q^{-6} - q^{-8} +6 q^{-10} -2 q^{-12} -2 q^{-14} + q^{-16} } |
3 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{71}-q^{67}-5 q^{65}-q^{63}+11 q^{61}+9 q^{59}-10 q^{57}-24 q^{55}+6 q^{53}+35 q^{51}+4 q^{49}-40 q^{47}-22 q^{45}+39 q^{43}+34 q^{41}-28 q^{39}-36 q^{37}+14 q^{35}+35 q^{33}-q^{31}-28 q^{29}-11 q^{27}+20 q^{25}+17 q^{23}-13 q^{21}-27 q^{19}+7 q^{17}+33 q^{15}-39 q^{11}-5 q^9+42 q^7+18 q^5-37 q^3-29 q+30 q^{-1} +35 q^{-3} -12 q^{-5} -37 q^{-7} -3 q^{-9} +30 q^{-11} +15 q^{-13} -16 q^{-15} -18 q^{-17} +3 q^{-19} +14 q^{-21} + q^{-23} -6 q^{-25} -3 q^{-27} +2 q^{-29} +2 q^{-31} - q^{-33} } |
A2 Invariants.
Weight | Invariant |
---|---|
1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{18}+q^{16}-q^{14}+q^{10}-q^8+2 q^6-q^4+2 q^2+1+ q^{-4} - q^{-6} } |
1,1 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{52}-2 q^{50}-2 q^{48}+2 q^{46}+2 q^{44}-4 q^{42}+18 q^{40}-36 q^{38}+62 q^{36}-90 q^{34}+104 q^{32}-114 q^{30}+99 q^{28}-68 q^{26}+26 q^{24}+32 q^{22}-84 q^{20}+132 q^{18}-170 q^{16}+186 q^{14}-194 q^{12}+176 q^{10}-138 q^8+94 q^6-32 q^4-16 q^2+70-96 q^{-2} +107 q^{-4} -104 q^{-6} +84 q^{-8} -62 q^{-10} +40 q^{-12} -22 q^{-14} +10 q^{-16} -4 q^{-18} + q^{-20} } |
2,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{48}+q^{42}+3 q^{40}-2 q^{38}-q^{36}+q^{34}+2 q^{32}-2 q^{30}-5 q^{28}+3 q^{26}+q^{24}-3 q^{22}-q^{20}+3 q^{18}-q^{16}-q^{14}+2 q^{12}+q^6+5 q^4-q^2+5 q^{-2} + q^{-4} -4 q^{-6} - q^{-8} +2 q^{-10} + q^{-12} -2 q^{-14} - q^{-16} + q^{-18} } |
A3 Invariants.
Weight | Invariant |
---|---|
0,1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{42}-q^{40}-q^{38}+4 q^{36}-3 q^{34}-4 q^{32}+7 q^{30}-4 q^{28}-4 q^{26}+6 q^{24}-3 q^{22}-2 q^{20}+2 q^{18}+q^{16}-q^{12}+3 q^{10}+3 q^8-5 q^6+3 q^4+6 q^2-5+3 q^{-2} +4 q^{-4} -5 q^{-6} +2 q^{-8} -2 q^{-12} + q^{-14} } |
1,0,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{23}+q^{21}-2 q^{19}+q^{17}-q^{15}+q^{13}+q^9+q^7+2 q^3+2 q^{-1} - q^{-3} + q^{-5} - q^{-7} } |
A4 Invariants.
Weight | Invariant |
---|---|
0,1,0,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2 q^{52}-q^{50}-2 q^{48}+4 q^{46}+q^{44}-6 q^{42}+4 q^{38}-4 q^{36}-6 q^{34}+3 q^{32}+3 q^{30}-5 q^{28}+8 q^{24}-3 q^{22}-5 q^{20}+8 q^{18}-6 q^{14}+4 q^{12}+7 q^{10}-3 q^8-q^6+6 q^4+4 q^2-3+ q^{-2} +4 q^{-4} -2 q^{-6} -2 q^{-8} + q^{-10} - q^{-12} - q^{-14} + q^{-16} } |
1,0,0,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{28}+q^{26}-2 q^{24}-q^{18}+q^{16}+2 q^{12}+2 q^8+2 q^4+1+ q^{-2} - q^{-4} + q^{-6} - q^{-8} } |
B2 Invariants.
Weight | Invariant |
---|---|
0,1 | |
1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{68}-q^{64}-2 q^{62}+5 q^{58}+2 q^{56}-5 q^{54}-6 q^{52}+2 q^{50}+8 q^{48}+q^{46}-8 q^{44}-4 q^{42}+6 q^{40}+5 q^{38}-4 q^{36}-6 q^{34}+2 q^{32}+6 q^{30}-6 q^{26}-q^{24}+5 q^{22}+3 q^{20}-3 q^{18}-4 q^{16}+4 q^{14}+5 q^{12}-2 q^{10}-7 q^8+2 q^6+8 q^4+4 q^2-6-6 q^{-2} +5 q^{-4} +8 q^{-6} - q^{-8} -6 q^{-10} -2 q^{-12} +4 q^{-14} +2 q^{-16} -2 q^{-18} -2 q^{-20} + q^{-24} } |
D4 Invariants.
Weight | Invariant |
---|---|
1,0,0,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{58}-q^{56}+q^{54}-2 q^{52}+5 q^{50}-6 q^{48}+4 q^{46}-6 q^{44}+7 q^{42}-6 q^{40}+3 q^{38}-4 q^{36}+q^{34}+2 q^{32}-4 q^{30}+4 q^{28}-8 q^{26}+10 q^{24}-9 q^{22}+11 q^{20}-10 q^{18}+11 q^{16}-7 q^{14}+9 q^{12}-5 q^{10}+3 q^8+q^6+3 q^2-3+7 q^{-2} -6 q^{-4} +6 q^{-6} -6 q^{-8} +5 q^{-10} -4 q^{-12} +2 q^{-14} -2 q^{-16} + q^{-18} } |
G2 Invariants.
Weight | Invariant |
---|---|
1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{100}-q^{98}+q^{96}-2 q^{90}+2 q^{88}+2 q^{86}-6 q^{84}+11 q^{82}-16 q^{80}+10 q^{78}-3 q^{76}-13 q^{74}+29 q^{72}-35 q^{70}+27 q^{68}-8 q^{66}-16 q^{64}+35 q^{62}-36 q^{60}+23 q^{58}-20 q^{54}+28 q^{52}-21 q^{50}+2 q^{48}+21 q^{46}-34 q^{44}+32 q^{42}-18 q^{40}-5 q^{38}+27 q^{36}-42 q^{34}+42 q^{32}-31 q^{30}+11 q^{28}+15 q^{26}-35 q^{24}+44 q^{22}-33 q^{20}+15 q^{18}+10 q^{16}-28 q^{14}+31 q^{12}-16 q^{10}-3 q^8+25 q^6-32 q^4+24 q^2-1-22 q^{-2} +36 q^{-4} -35 q^{-6} +22 q^{-8} -3 q^{-10} -16 q^{-12} +25 q^{-14} -22 q^{-16} +16 q^{-18} -5 q^{-20} -3 q^{-22} +5 q^{-24} -7 q^{-26} +4 q^{-28} -2 q^{-30} + q^{-32} } |
.
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["10 156"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^3-4 t^2+8 t-9+8 t^{-1} -4 t^{-2} + t^{-3} } |
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \{1\}} |
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 35, -2 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^2+3 q-4+6 q^{-1} -6 q^{-2} +6 q^{-3} -5 q^{-4} +3 q^{-5} - q^{-6} } |
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a^2 z^6-a^4 z^4+4 a^2 z^4-z^4-2 a^4 z^2+5 a^2 z^2-2 z^2-a^4+2 a^2} |
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a^4 z^8+a^2 z^8+a^5 z^7+4 a^3 z^7+3 a z^7-a^4 z^6+2 a^2 z^6+3 z^6-a^5 z^5-9 a^3 z^5-7 a z^5+z^5 a^{-1} +3 a^6 z^4+2 a^4 z^4-9 a^2 z^4-8 z^4+a^7 z^3+4 a^5 z^3+8 a^3 z^3+3 a z^3-2 z^3 a^{-1} -2 a^6 z^2+a^4 z^2+7 a^2 z^2+4 z^2-a^7 z-2 a^5 z-2 a^3 z-a z-a^4-2 a^2} |
Vassiliev invariants
V2 and V3: | (1, -1) |
V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^rq^j} are shown, along with their alternating sums Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \chi} (fixed Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j} , alternation over Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r} ). The squares with yellow highlighting are those on the "critical diagonals", where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j-2r=s+1} or Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j-2r=s+1} , where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s=} -2 is the signature of 10 156. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.
|
-5 | -4 | -3 | -2 | -1 | 0 | 1 | 2 | 3 | χ | |||||||||
5 | 1 | -1 | |||||||||||||||||
3 | 2 | 2 | |||||||||||||||||
1 | 2 | 1 | -1 | ||||||||||||||||
-1 | 4 | 2 | 2 | ||||||||||||||||
-3 | 3 | 3 | 0 | ||||||||||||||||
-5 | 3 | 3 | 0 | ||||||||||||||||
-7 | 2 | 3 | 1 | ||||||||||||||||
-9 | 1 | 3 | -2 | ||||||||||||||||
-11 | 2 | 2 | |||||||||||||||||
-13 | 1 | -1 |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session.
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \textrm{Include}(\textrm{ColouredJonesM.mhtml})}
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 17, 2005, 14:44:34)... | |
In[2]:= | Crossings[Knot[10, 156]] |
Out[2]= | 10 |
In[3]:= | PD[Knot[10, 156]] |
Out[3]= | PD[X[4, 2, 5, 1], X[12, 4, 13, 3], X[7, 14, 8, 15], X[18, 9, 19, 10],X[6, 19, 7, 20], X[16, 5, 17, 6], X[10, 17, 11, 18], X[13, 8, 14, 9],X[20, 15, 1, 16], X[2, 12, 3, 11]] |
In[4]:= | GaussCode[Knot[10, 156]] |
Out[4]= | GaussCode[1, -10, 2, -1, 6, -5, -3, 8, 4, -7, 10, -2, -8, 3, 9, -6, 7, -4, 5, -9] |
In[5]:= | BR[Knot[10, 156]] |
Out[5]= | BR[4, {-1, -1, -1, 2, 1, 1, -3, -2, 1, -2, -3}] |
In[6]:= | alex = Alexander[Knot[10, 156]][t] |
Out[6]= | -3 4 8 2 3 |
In[7]:= | Conway[Knot[10, 156]][z] |
Out[7]= | 2 4 6 1 + z + 2 z + z |
In[8]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[8]= | {Knot[8, 16], Knot[10, 156], Knot[11, NonAlternating, 15], Knot[11, NonAlternating, 56], Knot[11, NonAlternating, 58]} |
In[9]:= | {KnotDet[Knot[10, 156]], KnotSignature[Knot[10, 156]]} |
Out[9]= | {35, -2} |
In[10]:= | J=Jones[Knot[10, 156]][q] |
Out[10]= | -6 3 5 6 6 6 2 |
In[11]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[11]= | {Knot[8, 16], Knot[10, 156]} |
In[12]:= | A2Invariant[Knot[10, 156]][q] |
Out[12]= | -18 -16 -14 -10 -8 2 -4 2 4 6 |
In[13]:= | Kauffman[Knot[10, 156]][a, z] |
Out[13]= | 2 4 3 5 7 2 2 2 4 2 |
In[14]:= | {Vassiliev[2][Knot[10, 156]], Vassiliev[3][Knot[10, 156]]} |
Out[14]= | {0, -1} |
In[15]:= | Kh[Knot[10, 156]][q, t] |
Out[15]= | 3 4 1 2 1 3 2 3 3 |