9 35

From Knot Atlas
Revision as of 20:52, 27 August 2005 by ScottTestRobot (talk | contribs)
Jump to navigationJump to search


9 34.gif

9_34

9 36.gif

9_36

9 35.gif Visit 9 35's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit 9 35's page at Knotilus!

Visit 9 35's page at the original Knot Atlas!

9_35 is also known as the pretzel knot P(3,3,3).




Three-fold symmetric decorative knot
Another three-fold symmetric decorative form

Knot presentations

Planar diagram presentation X1829 X7,14,8,15 X5,16,6,17 X9,18,10,1 X15,6,16,7 X17,10,18,11 X13,2,14,3 X3,12,4,13 X11,4,12,5
Gauss code -1, 7, -8, 9, -3, 5, -2, 1, -4, 6, -9, 8, -7, 2, -5, 3, -6, 4
Dowker-Thistlethwaite code 8 12 16 14 18 4 2 6 10
Conway Notation [3,3,3]

Three dimensional invariants

Symmetry type Reversible
Unknotting number 3
3-genus 1
Bridge index 3
Super bridge index
Nakanishi index 2
Maximal Thurston-Bennequin number [-12][1]
Hyperbolic Volume 7.94058
A-Polynomial See Data:9 35/A-polynomial

[edit Notes for 9 35's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus
Topological 4 genus
Concordance genus
Rasmussen s-Invariant -2

[edit Notes for 9 35's four dimensional invariants]

Polynomial invariants

Alexander polynomial
Conway polynomial
2nd Alexander ideal (db, data sources)
Determinant and Signature { 27, -2 }
Jones polynomial
HOMFLY-PT polynomial (db, data sources)
Kauffman polynomial (db, data sources)
The A2 invariant
The G2 invariant

Vassiliev invariants

V2 and V3: (7, -18)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where -2 is the signature of 9 35. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.

\ r
  \  
j \
-9-8-7-6-5-4-3-2-10χ
-1         11
-3        21-1
-5       1  1
-7      32  -1
-9     21   1
-11    13    2
-13   32     1
-15   1      1
-17 13       -2
-19          0
-211         -1

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 17, 2005, 14:44:34)...
In[2]:=
Crossings[Knot[9, 35]]
Out[2]=  
9
In[3]:=
PD[Knot[9, 35]]
Out[3]=  
PD[X[1, 8, 2, 9], X[7, 14, 8, 15], X[5, 16, 6, 17], X[9, 18, 10, 1], 
 X[15, 6, 16, 7], X[17, 10, 18, 11], X[13, 2, 14, 3], X[3, 12, 4, 13], 

X[11, 4, 12, 5]]
In[4]:=
GaussCode[Knot[9, 35]]
Out[4]=  
GaussCode[-1, 7, -8, 9, -3, 5, -2, 1, -4, 6, -9, 8, -7, 2, -5, 3, -6, 4]
In[5]:=
BR[Knot[9, 35]]
Out[5]=  
BR[5, {-1, -1, -2, 1, -2, -2, -3, 2, 2, -4, 3, -2, -4, -3}]
In[6]:=
alex = Alexander[Knot[9, 35]][t]
Out[6]=  
      7

-13 + - + 7 t

t
In[7]:=
Conway[Knot[9, 35]][z]
Out[7]=  
       2
1 + 7 z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=  
{Knot[9, 35]}
In[9]:=
{KnotDet[Knot[9, 35]], KnotSignature[Knot[9, 35]]}
Out[9]=  
{27, -2}
In[10]:=
J=Jones[Knot[9, 35]][q]
Out[10]=  
  -10    -9   3    4    3    5    4    3    2    1

-q + q - -- + -- - -- + -- - -- + -- - -- + -

              8    7    6    5    4    3    2   q
q q q q q q q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=  
{Knot[9, 35]}
In[12]:=
A2Invariant[Knot[9, 35]][q]
Out[12]=  
  -32    -30    2     -24    -22    -20    3     2     -14    -10

-q - q - --- - q + q + q + --- + --- + q - q +

               26                         18    16
              q                          q     q

  -8    -4    -2
q - q + q
In[13]:=
Kauffman[Knot[9, 35]][a, z]
Out[13]=  
    6    8    10    7        9        11      2  2      4  2

-3 a - a + a - a z - 9 a z - 8 a z + a z - 2 a z +

     6  2       8  2    10  2      3  3      5  3      7  3
 12 a  z  + 16 a  z  + a   z  + 2 a  z  - 6 a  z  + 3 a  z  + 

     9  3       11  3      4  4       6  4       8  4      10  4
 23 a  z  + 12 a   z  + 3 a  z  - 15 a  z  - 15 a  z  + 3 a   z  + 

    5  5      7  5       9  5      11  5      6  6    8  6
 4 a  z  - 8 a  z  - 18 a  z  - 6 a   z  + 5 a  z  + a  z  - 

    10  6      7  7      9  7    11  7    8  8    10  8
4 a z + 3 a z + 4 a z + a z + a z + a z
In[14]:=
{Vassiliev[2][Knot[9, 35]], Vassiliev[3][Knot[9, 35]]}
Out[14]=  
{0, -18}
In[15]:=
Kh[Knot[9, 35]][q, t]
Out[15]=  
 -3   1     1        1        3        1        3        2

q + - + ------ + ------ + ------ + ------ + ------ + ------ +

     q    21  9    17  8    17  7    15  6    13  6    13  5
         q   t    q   t    q   t    q   t    q   t    q   t

   1        3        2       1       3       2       1      2
 ------ + ------ + ----- + ----- + ----- + ----- + ----- + ----
  11  5    11  4    9  4    9  3    7  3    7  2    5  2    3
q t q t q t q t q t q t q t q t