T(11,2)
|
|
|
|
Visit [[[:Template:KnotilusURL]] T(11,2)'s page] at Knotilus!
Visit T(11,2)'s page at the original Knot Atlas! See also K11a367. |
T(11,2) Further Notes and Views
Knot presentations
| Planar diagram presentation | X5,17,6,16 X17,7,18,6 X7,19,8,18 X19,9,20,8 X9,21,10,20 X21,11,22,10 X11,1,12,22 X1,13,2,12 X13,3,14,2 X3,15,4,14 X15,5,16,4 |
| Gauss code | -8, 9, -10, 11, -1, 2, -3, 4, -5, 6, -7, 8, -9, 10, -11, 1, -2, 3, -4, 5, -6, 7 |
| Dowker-Thistlethwaite code | 12 14 16 18 20 22 2 4 6 8 10 |
| Conway Notation | Data:T(11,2)/Conway Notation |
Polynomial invariants
| Alexander polynomial | [math]\displaystyle{ t^5-t^4+t^3-t^2+t-1+ t^{-1} - t^{-2} + t^{-3} - t^{-4} + t^{-5} }[/math] |
| Conway polynomial | [math]\displaystyle{ z^{10}+9 z^8+28 z^6+35 z^4+15 z^2+1 }[/math] |
| 2nd Alexander ideal (db, data sources) | [math]\displaystyle{ \{1\} }[/math] |
| Determinant and Signature | { 11, 10 } |
| Jones polynomial | [math]\displaystyle{ -q^{16}+q^{15}-q^{14}+q^{13}-q^{12}+q^{11}-q^{10}+q^9-q^8+q^7+q^5 }[/math] |
| HOMFLY-PT polynomial (db, data sources) | [math]\displaystyle{ z^{10} a^{-10} +10 z^8 a^{-10} -z^8 a^{-12} +36 z^6 a^{-10} -8 z^6 a^{-12} +56 z^4 a^{-10} -21 z^4 a^{-12} +35 z^2 a^{-10} -20 z^2 a^{-12} +6 a^{-10} -5 a^{-12} }[/math] |
| Kauffman polynomial (db, data sources) | [math]\displaystyle{ z^{10} a^{-10} +z^{10} a^{-12} +z^9 a^{-11} +z^9 a^{-13} -10 z^8 a^{-10} -9 z^8 a^{-12} +z^8 a^{-14} -8 z^7 a^{-11} -7 z^7 a^{-13} +z^7 a^{-15} +36 z^6 a^{-10} +29 z^6 a^{-12} -6 z^6 a^{-14} +z^6 a^{-16} +21 z^5 a^{-11} +15 z^5 a^{-13} -5 z^5 a^{-15} +z^5 a^{-17} -56 z^4 a^{-10} -41 z^4 a^{-12} +10 z^4 a^{-14} -4 z^4 a^{-16} +z^4 a^{-18} -20 z^3 a^{-11} -10 z^3 a^{-13} +6 z^3 a^{-15} -3 z^3 a^{-17} +z^3 a^{-19} +35 z^2 a^{-10} +25 z^2 a^{-12} -4 z^2 a^{-14} +3 z^2 a^{-16} -2 z^2 a^{-18} +z^2 a^{-20} +5 z a^{-11} +z a^{-13} -z a^{-15} +z a^{-17} -z a^{-19} +z a^{-21} -6 a^{-10} -5 a^{-12} }[/math] |
| The A2 invariant | Data:T(11,2)/QuantumInvariant/A2/1,0 |
| The G2 invariant | Data:T(11,2)/QuantumInvariant/G2/1,0 |
KnotTheory`, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["T(11,2)"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
[math]\displaystyle{ t^5-t^4+t^3-t^2+t-1+ t^{-1} - t^{-2} + t^{-3} - t^{-4} + t^{-5} }[/math] |
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
[math]\displaystyle{ z^{10}+9 z^8+28 z^6+35 z^4+15 z^2+1 }[/math] |
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
[math]\displaystyle{ \{1\} }[/math] |
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 11, 10 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
[math]\displaystyle{ -q^{16}+q^{15}-q^{14}+q^{13}-q^{12}+q^{11}-q^{10}+q^9-q^8+q^7+q^5 }[/math] |
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
[math]\displaystyle{ z^{10} a^{-10} +10 z^8 a^{-10} -z^8 a^{-12} +36 z^6 a^{-10} -8 z^6 a^{-12} +56 z^4 a^{-10} -21 z^4 a^{-12} +35 z^2 a^{-10} -20 z^2 a^{-12} +6 a^{-10} -5 a^{-12} }[/math] |
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
[math]\displaystyle{ z^{10} a^{-10} +z^{10} a^{-12} +z^9 a^{-11} +z^9 a^{-13} -10 z^8 a^{-10} -9 z^8 a^{-12} +z^8 a^{-14} -8 z^7 a^{-11} -7 z^7 a^{-13} +z^7 a^{-15} +36 z^6 a^{-10} +29 z^6 a^{-12} -6 z^6 a^{-14} +z^6 a^{-16} +21 z^5 a^{-11} +15 z^5 a^{-13} -5 z^5 a^{-15} +z^5 a^{-17} -56 z^4 a^{-10} -41 z^4 a^{-12} +10 z^4 a^{-14} -4 z^4 a^{-16} +z^4 a^{-18} -20 z^3 a^{-11} -10 z^3 a^{-13} +6 z^3 a^{-15} -3 z^3 a^{-17} +z^3 a^{-19} +35 z^2 a^{-10} +25 z^2 a^{-12} -4 z^2 a^{-14} +3 z^2 a^{-16} -2 z^2 a^{-18} +z^2 a^{-20} +5 z a^{-11} +z a^{-13} -z a^{-15} +z a^{-17} -z a^{-19} +z a^{-21} -6 a^{-10} -5 a^{-12} }[/math] |
Vassiliev invariants
| V2 and V3: | (15, 55) |
| V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). The squares with yellow highlighting are those on the "critical diagonals", where [math]\displaystyle{ j-2r=s+1 }[/math] or [math]\displaystyle{ j-2r=s+1 }[/math], where [math]\displaystyle{ s= }[/math]10 is the signature of T(11,2). Nonzero entries off the critical diagonals (if any exist) are highlighted in red.
|
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | χ | |||||||||
| 33 | 1 | -1 | ||||||||||||||||||||
| 31 | 0 | |||||||||||||||||||||
| 29 | 1 | 1 | 0 | |||||||||||||||||||
| 27 | 0 | |||||||||||||||||||||
| 25 | 1 | 1 | 0 | |||||||||||||||||||
| 23 | 0 | |||||||||||||||||||||
| 21 | 1 | 1 | 0 | |||||||||||||||||||
| 19 | 0 | |||||||||||||||||||||
| 17 | 1 | 1 | 0 | |||||||||||||||||||
| 15 | 0 | |||||||||||||||||||||
| 13 | 1 | 1 | ||||||||||||||||||||
| 11 | 1 | 1 | ||||||||||||||||||||
| 9 | 1 | 1 |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
[math]\displaystyle{ \textrm{Include}(\textrm{ColouredJonesM.mhtml}) }[/math]
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 17, 2005, 14:44:34)... | |
In[2]:= | Crossings[TorusKnot[11, 2]] |
Out[2]= | 11 |
In[3]:= | PD[TorusKnot[11, 2]] |
Out[3]= | PD[X[5, 17, 6, 16], X[17, 7, 18, 6], X[7, 19, 8, 18], X[19, 9, 20, 8],X[9, 21, 10, 20], X[21, 11, 22, 10], X[11, 1, 12, 22],X[1, 13, 2, 12], X[13, 3, 14, 2], X[3, 15, 4, 14], X[15, 5, 16, 4]] |
In[4]:= | GaussCode[TorusKnot[11, 2]] |
Out[4]= | GaussCode[-8, 9, -10, 11, -1, 2, -3, 4, -5, 6, -7, 8, -9, 10, -11, 1, -2, 3, -4, 5, -6, 7] |
In[5]:= | BR[TorusKnot[11, 2]] |
Out[5]= | BR[2, {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}] |
In[6]:= | alex = Alexander[TorusKnot[11, 2]][t] |
Out[6]= | -5 -4 -3 -2 1 2 3 4 5 |
In[7]:= | Conway[TorusKnot[11, 2]][z] |
Out[7]= | 2 4 6 8 10 1 + 15 z + 35 z + 28 z + 9 z + z |
In[8]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[8]= | {Knot[11, Alternating, 367]} |
In[9]:= | {KnotDet[TorusKnot[11, 2]], KnotSignature[TorusKnot[11, 2]]} |
Out[9]= | {11, 10} |
In[10]:= | J=Jones[TorusKnot[11, 2]][q] |
Out[10]= | 5 7 8 9 10 11 12 13 14 15 16 q + q - q + q - q + q - q + q - q + q - q |
In[11]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[11]= | {Knot[11, Alternating, 367]} |
In[12]:= | A2Invariant[TorusKnot[11, 2]][q] |
Out[12]= | 18 20 22 24 26 42 44 46 q + q + 2 q + q + q - q - q - q |
In[13]:= | Kauffman[TorusKnot[11, 2]][a, z] |
Out[13]= | 2 2 2 |
In[14]:= | {Vassiliev[2][TorusKnot[11, 2]], Vassiliev[3][TorusKnot[11, 2]]} |
Out[14]= | {0, 55} |
In[15]:= | Kh[TorusKnot[11, 2]][q, t] |
Out[15]= | 9 11 13 2 17 3 17 4 21 5 21 6 25 7 |
This category should contain all the individual knots pages, like 7_5, K11n67, L8a2 and T(5,3)


