T(7,3)
|
|
![]() |
Visit [[[:Template:KnotilusURL]] T(7,3)'s page] at Knotilus!
Visit T(7,3)'s page at the original Knot Atlas! |
T(7,3) Further Notes and Views
Knot presentations
Planar diagram presentation | X1,11,2,10 X20,12,21,11 X21,3,22,2 X12,4,13,3 X13,23,14,22 X4,24,5,23 X5,15,6,14 X24,16,25,15 X25,7,26,6 X16,8,17,7 X17,27,18,26 X8,28,9,27 X9,19,10,18 X28,20,1,19 |
Gauss code | -1, 3, 4, -6, -7, 9, 10, -12, -13, 1, 2, -4, -5, 7, 8, -10, -11, 13, 14, -2, -3, 5, 6, -8, -9, 11, 12, -14 |
Dowker-Thistlethwaite code | 10 -12 14 -16 18 -20 22 -24 26 -28 2 -4 6 -8 |
Conway Notation | Data:T(7,3)/Conway Notation |
Polynomial invariants
Vassiliev invariants
V2 and V3: | (16, 56) |
V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 8 is the signature of T(7,3). Nonzero entries off the critical diagonals (if any exist) are highlighted in red.
|
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | χ | |||||||||
29 | 1 | -1 | ||||||||||||||||||
27 | 1 | -1 | ||||||||||||||||||
25 | 1 | 1 | 0 | |||||||||||||||||
23 | 1 | 1 | 0 | |||||||||||||||||
21 | 1 | 1 | 0 | |||||||||||||||||
19 | 1 | 1 | 0 | |||||||||||||||||
17 | 1 | 1 | ||||||||||||||||||
15 | 1 | 1 | ||||||||||||||||||
13 | 1 | 1 | ||||||||||||||||||
11 | 1 | 1 |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session.
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 17, 2005, 14:44:34)... | |
In[2]:= | Crossings[TorusKnot[7, 3]] |
Out[2]= | 14 |
In[3]:= | PD[TorusKnot[7, 3]] |
Out[3]= | PD[X[1, 11, 2, 10], X[20, 12, 21, 11], X[21, 3, 22, 2],X[12, 4, 13, 3], X[13, 23, 14, 22], X[4, 24, 5, 23], X[5, 15, 6, 14], X[24, 16, 25, 15], X[25, 7, 26, 6], X[16, 8, 17, 7], X[17, 27, 18, 26], X[8, 28, 9, 27], X[9, 19, 10, 18],X[28, 20, 1, 19]] |
In[4]:= | GaussCode[TorusKnot[7, 3]] |
Out[4]= | GaussCode[-1, 3, 4, -6, -7, 9, 10, -12, -13, 1, 2, -4, -5, 7, 8, -10, -11, 13, 14, -2, -3, 5, 6, -8, -9, 11, 12, -14] |
In[5]:= | BR[TorusKnot[7, 3]] |
Out[5]= | BR[3, {1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2}] |
In[6]:= | alex = Alexander[TorusKnot[7, 3]][t] |
Out[6]= | -6 -5 -3 -2 2 3 5 6 1 + t - t + t - t - t + t - t + t |
In[7]:= | Conway[TorusKnot[7, 3]][z] |
Out[7]= | 2 4 6 8 10 12 1 + 16 z + 60 z + 78 z + 44 z + 11 z + z |
In[8]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[8]= | {} |
In[9]:= | {KnotDet[TorusKnot[7, 3]], KnotSignature[TorusKnot[7, 3]]} |
Out[9]= | {1, 8} |
In[10]:= | J=Jones[TorusKnot[7, 3]][q] |
Out[10]= | 6 8 14 q + q - q |
In[11]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[11]= | {} |
In[12]:= | A2Invariant[TorusKnot[7, 3]][q] |
Out[12]= | 22 24 26 28 30 32 34 38 40 42 |
In[13]:= | Kauffman[TorusKnot[7, 3]][a, z] |
Out[13]= | 2 2 2 3 35 16 12 16 z 16 z 10 z 76 z 66 z 60 z 60 z |
In[14]:= | {Vassiliev[2][TorusKnot[7, 3]], Vassiliev[3][TorusKnot[7, 3]]} |
Out[14]= | {0, 56} |
In[15]:= | Kh[TorusKnot[7, 3]][q, t] |
Out[15]= | 11 13 15 2 19 3 17 4 19 4 21 5 23 5 |
This category should contain all the individual knots pages, like 7_5, K11n67, L8a2 and T(5,3)