The Kauffman Polynomial

From Knot Atlas
Revision as of 21:30, 28 August 2005 by 69.156.15.171 (talk)
Jump to navigationJump to search


The Kauffman polynomial [math]\displaystyle{ F(K)(a,z) }[/math] (see [Kauffman]) of a knot or link [math]\displaystyle{ K }[/math] is [math]\displaystyle{ a^{-w(K)}L(K) }[/math] where [math]\displaystyle{ w(L) }[/math] is the writhe of [math]\displaystyle{ K }[/math] (see How is the Jones Polynomial Computed?) and where [math]\displaystyle{ L(K) }[/math] is the regular isotopy invariant defined by the skein relations

[math]\displaystyle{ L(s_+)=aL(s), \qquad L(s_-)=a^{-1}L(s) }[/math]

(here [math]\displaystyle{ s }[/math] is a strand and [math]\displaystyle{ s_\pm }[/math] is the same strand with a [math]\displaystyle{ \pm }[/math] kink added) and

[math]\displaystyle{ L(T_1)+L(T_2) = z\left(L(T_3)+L(T_4)\right) }[/math]

(here [math]\displaystyle{ T_1 }[/math], [math]\displaystyle{ T_2 }[/math], [math]\displaystyle{ T_3 }[/math] and [math]\displaystyle{ T_4 }[/math] are Backoverslash symbol.gif, Slashoverback symbol.gif, Vsmoothing symbol.gif and Hsmoothing symbol.gif, respectively), and by the initial condition [math]\displaystyle{ L(U)=1 }[/math] where [math]\displaystyle{ U }[/math] is the unknot BigCirc symbol.gif.

KnotTheory` knows about the Kauffman polynomial:

(For In[1] see Setup)

In[1]:= ?Kauffman

Kauffman[K][a, z] computes the Kauffman polynomial of a knot or link K, in the variables a and z.

In[2]:= Kauffman::about

The Kauffman program was written by Scott Morrison.

Thus, for example, here's the Kauffman polynomial of the knot 5_2:

In[3]:=
Kauffman[Knot[5, 2]][a, z]
Out[3]=
  2    4    6      5        7      2  2    4  2      6  2    3  3      5  3    7  3    4  4
-a  + a  + a  - 2 a  z - 2 a  z + a  z  - a  z  - 2 a  z  + a  z  + 2 a  z  + a  z  + a  z  + 
 
   6  4
  a  z

It is well known that the Jones polynomial is related to the Kauffman polynomial via

[math]\displaystyle{ J(L)(q) = (-1)^cL(K)(-q^{-3/4},\,q^{1/4}+q^{-1/4}) }[/math],

where [math]\displaystyle{ K }[/math] is some knot or link and where [math]\displaystyle{ c }[/math] is the number of components of [math]\displaystyle{ K }[/math]. Let us verify this fact for the torus knot T(8,3):

In[4]:=
K = TorusKnot[8, 3];
In[5]:=
Simplify[{
  (-1)^(Length[Skeleton[K]]-1)Kauffman[K][-q^(-3/4), q^(1/4)+q^(-1/4)],
  Jones[K][q]
}]
Out[5]=
  7    9    16   7    9    16
{q  + q  - q  , q  + q  - q  }

[Kauffman] ^  L. H. Kauffman, An invariant of regular isotopy, Trans. Amer. Math. Soc. 312 (1990) 417-471.