The HOMFLY-PT Polynomial

From Knot Atlas
Revision as of 19:44, 27 August 2005 by 69.156.15.171 (talk)
Jump to navigationJump to search


The HOMFLY-PT polynomial [math]\displaystyle{ H(L)(a,z) }[/math] (see [HOMFLY] and [PT]) of a knot or link [math]\displaystyle{ L }[/math] is defined by the skein relation

[math]\displaystyle{ aH\left(\{overcrossing\}\right) -a^{-1}H\left(\{undercrossing\}\right) = zH\left(\{smoothing\}\right) }[/math]

and by the initial condition [math]\displaystyle{ H(\{bigcirc\}) }[/math]=1.

KnotTheory` knows about the HOMFLY-PT polynomial:

(For In[1] see Setup)

In[1]:= ?HOMFLYPT

HOMFLYPT[K][a, z] computes the HOMFLY-PT (Hoste, Ocneanu, Millett, Freyd, Lickorish, Yetter, Przytycki and Traczyk) polynomial of a knot/link K, in the variables a and z.

In[2]:= HOMFLYPT::about

The HOMFLYPT program was written by Scott Morrison.

Thus, for example, here's the HOMFLY-PT polynomial of the knot 8_1:

In[3]:=
K = Knot[8, 1];
In[4]:=
HOMFLYPT[Knot[8, 1]][a, z]
Out[4]=
 -2    4    6    2    2  2    4  2
a   - a  + a  - z  - a  z  - a  z

It is well known that HOMFLY-PT polynomial specializes to the Jones polynomial at [math]\displaystyle{ a=q^{-1} }[/math] and [math]\displaystyle{ z=q^{1/2}-q^{-1/2} }[/math] and to the Conway polynomial at [math]\displaystyle{ a=1 }[/math]. Indeed,

In[5]:=
Expand[HOMFLYPT[K][1/q, Sqrt[q]-1/Sqrt[q]]]
Out[5]=
     -6    -5    -4   2    2    2        2
2 + q   - q   + q   - -- + -- - - - q + q
                       3    2   q
                      q    q
In[6]:=
Jones[K][q]
Out[6]=
     -6    -5    -4   2    2    2        2
2 + q   - q   + q   - -- + -- - - - q + q
                       3    2   q
                      q    q
In[7]:=
{HOMFLYPT[K][1, z], Conway[K][z]}
Out[7]=
        2         2
{1 - 3 z , 1 - 3 z }

In our parametirzation of the [math]\displaystyle{ A_2 }[/math] link invariant, it satisfies

[math]\displaystyle{ A_2(L)(q) = (-1)^c(q^2+1+q^{-2})H(L)(q^{-3},\,q-q^{-1}) }[/math],

where [math]\displaystyle{ L }[/math] is some knot or link and where [math]\displaystyle{ c }[/math] is the number of components of [math]\displaystyle{ L }[/math]. Let us verify this fact for the Whitehead link, L5a1:

In[8]:=
L = Link[5, Alternating, 1];
In[9]:=
Simplify[{
  (-1)^(Length[Skeleton[L]]-1)(q^2+1+1/q^2)HOMFLYPT[L][1/q^3, q-1/q],
  A2Invariant[L][q]
}]
Out[9]=
      -12    -8    -6   2     -2    2    4    6       -12    -8    -6   2     -2    2    4    6
{2 - q    + q   + q   + -- + q   + q  + q  + q , 2 - q    + q   + q   + -- + q   + q  + q  + q }
                         4                                               4
                        q                                               q

[HOMFLY] ^  J. Hoste, A. Ocneanu, K. Millett, P. Freyd, W. B. R. Lickorish and D. Yetter, A new polynomial invariant of knots and links, Bull. Amer. Math. Soc. 12 (1985) 239-246.

[PT] ^  J. Przytycki and P. Traczyk, [math]\displaystyle{ Conway Algebras and Skein Equivalence of Links }[/math], Proc. Amer. Math. Soc. 100 (1987) 744-748.