8 5

From Knot Atlas
Revision as of 19:10, 28 August 2005 by ScottTestRobot (talk | contribs)
Jump to navigationJump to search

8 4.gif

8_4

8 6.gif

8_6

8 5.gif Visit 8 5's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit 8 5's page at Knotilus!

Visit 8 5's page at the original Knot Atlas!

8 5 is also known as the pretzel knot P(3,3,2).



Symmetric alternative representation
Pretzel P(3,3,2) form Photo 01-09-2017 besalu.jpg.
Sum of 8.5 ; church of Besalu, Catalogna

Knot presentations

Planar diagram presentation X6271 X8493 X2837 X14,10,15,9 X12,5,13,6 X4,13,5,14 X16,12,1,11 X10,16,11,15
Gauss code 1, -3, 2, -6, 5, -1, 3, -2, 4, -8, 7, -5, 6, -4, 8, -7
Dowker-Thistlethwaite code 6 8 12 2 14 16 4 10
Conway Notation [3,3,2]

Three dimensional invariants

Symmetry type Reversible
Unknotting number 2
3-genus 3
Bridge index 3
Super bridge index
Nakanishi index 1
Maximal Thurston-Bennequin number [1][-11]
Hyperbolic Volume 6.99719
A-Polynomial See Data:8 5/A-polynomial

[edit Notes for 8 5's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus
Topological 4 genus
Concordance genus
Rasmussen s-Invariant -4

[edit Notes for 8 5's four dimensional invariants]

Polynomial invariants

Alexander polynomial
Conway polynomial
2nd Alexander ideal (db, data sources)
Determinant and Signature { 21, 4 }
Jones polynomial
HOMFLY-PT polynomial (db, data sources)
Kauffman polynomial (db, data sources)
The A2 invariant
The G2 invariant

Vassiliev invariants

V2 and V3: (-1, -3)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 4 is the signature of 8 5. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-2-10123456χ
17        11
15       1 -1
13      21 1
11     21  -1
9    12   -1
7   22    0
5  11     0
3 13      2
1         0
-11        1
Integral Khovanov Homology

(db, data source)

  

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 17, 2005, 14:44:34)...
In[2]:=
Crossings[Knot[8, 5]]
Out[2]=  
8
In[3]:=
PD[Knot[8, 5]]
Out[3]=  
PD[X[6, 2, 7, 1], X[8, 4, 9, 3], X[2, 8, 3, 7], X[14, 10, 15, 9], 
  X[12, 5, 13, 6], X[4, 13, 5, 14], X[16, 12, 1, 11], X[10, 16, 11, 15]]
In[4]:=
GaussCode[Knot[8, 5]]
Out[4]=  
GaussCode[1, -3, 2, -6, 5, -1, 3, -2, 4, -8, 7, -5, 6, -4, 8, -7]
In[5]:=
BR[Knot[8, 5]]
Out[5]=  
BR[3, {1, 1, 1, -2, 1, 1, 1, -2}]
In[6]:=
alex = Alexander[Knot[8, 5]][t]
Out[6]=  
     -3   3    4            2    3

5 - t + -- - - - 4 t + 3 t - t

          2   t
t
In[7]:=
Conway[Knot[8, 5]][z]
Out[7]=  
     2      4    6
1 - z  - 3 z  - z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=  
{Knot[8, 5], Knot[10, 141]}
In[9]:=
{KnotDet[Knot[8, 5]], KnotSignature[Knot[8, 5]]}
Out[9]=  
{21, 4}
In[10]:=
J=Jones[Knot[8, 5]][q]
Out[10]=  
           2      3      4      5      6      7    8
1 - q + 3 q  - 3 q  + 3 q  - 4 q  + 3 q  - 2 q  + q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=  
{Knot[8, 5]}
In[12]:=
A2Invariant[Knot[8, 5]][q]
Out[12]=  
     2      4      6      12    14    16    20    24
1 + q  + 2 q  + 2 q  - 3 q   - q   - q   + q   + q
In[13]:=
Kauffman[Knot[8, 5]][a, z]
Out[13]=  
                                  2       2      2       2      2

-2 5 4 4 z 7 z 3 z z 2 z 4 z 15 z 8 z -- - -- - -- + --- + --- + --- + --- - ---- + ---- + ----- + ---- +

6    4    2    7     5     3     10     8      6      4       2

a a a a a a a a a a a

    3      3       3      4      4       4      4      5    5      5
 2 z    8 z    10 z    3 z    7 z    15 z    5 z    4 z    z    3 z
 ---- - ---- - ----- + ---- - ---- - ----- - ---- + ---- + -- - ---- + 
   9      7      5       8      6      4       2      7     5     3
  a      a      a       a      a      a       a      a     a     a

    6      6    6    7    7
 3 z    4 z    z    z    z
 ---- + ---- + -- + -- + --
   6      4     2    5    3
a a a a a
In[14]:=
{Vassiliev[2][Knot[8, 5]], Vassiliev[3][Knot[8, 5]]}
Out[14]=  
{0, -3}
In[15]:=
Kh[Knot[8, 5]][q, t]
Out[15]=  
                    3
  3    5    1     q     5        7        7  2    9  2      9  3

3 q + q + ---- + -- + q t + 2 q t + 2 q t + q t + 2 q t +

              2   t
           q t

    11  3    11  4      13  4    13  5    15  5    17  6
2 q t + q t + 2 q t + q t + q t + q t