8 6

From Knot Atlas
Revision as of 19:11, 28 August 2005 by ScottTestRobot (talk | contribs)
Jump to navigationJump to search

8 5.gif

8_5

8 7.gif

8_7

8 6.gif Visit 8 6's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit 8 6's page at Knotilus!

Visit 8 6's page at the original Knot Atlas!

8 6 Quick Notes


8 6 Further Notes and Views

Knot presentations

Planar diagram presentation X1425 X9,12,10,13 X3,11,4,10 X11,3,12,2 X5,14,6,15 X7,16,8,1 X15,6,16,7 X13,8,14,9
Gauss code -1, 4, -3, 1, -5, 7, -6, 8, -2, 3, -4, 2, -8, 5, -7, 6
Dowker-Thistlethwaite code 4 10 14 16 12 2 8 6
Conway Notation [332]

Three dimensional invariants

Symmetry type Reversible
Unknotting number 2
3-genus 2
Bridge index 2
Super bridge index
Nakanishi index 1
Maximal Thurston-Bennequin number [-9][-1]
Hyperbolic Volume 7.47524
A-Polynomial See Data:8 6/A-polynomial

[edit Notes for 8 6's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus
Topological 4 genus
Concordance genus
Rasmussen s-Invariant -2

[edit Notes for 8 6's four dimensional invariants]

Polynomial invariants

Alexander polynomial
Conway polynomial
2nd Alexander ideal (db, data sources)
Determinant and Signature { 23, -2 }
Jones polynomial
HOMFLY-PT polynomial (db, data sources)
Kauffman polynomial (db, data sources)
The A2 invariant
The G2 invariant

Vassiliev invariants

V2 and V3: (-2, 3)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where -2 is the signature of 8 6. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-6-5-4-3-2-1012χ
3        11
1         0
-1      31 2
-3     21  -1
-5    22   0
-7   22    0
-9  12     -1
-11 12      1
-13 1       -1
-151        1
Integral Khovanov Homology

(db, data source)

  

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 17, 2005, 14:44:34)...
In[2]:=
Crossings[Knot[8, 6]]
Out[2]=  
8
In[3]:=
PD[Knot[8, 6]]
Out[3]=  
PD[X[1, 4, 2, 5], X[9, 12, 10, 13], X[3, 11, 4, 10], X[11, 3, 12, 2], 
  X[5, 14, 6, 15], X[7, 16, 8, 1], X[15, 6, 16, 7], X[13, 8, 14, 9]]
In[4]:=
GaussCode[Knot[8, 6]]
Out[4]=  
GaussCode[-1, 4, -3, 1, -5, 7, -6, 8, -2, 3, -4, 2, -8, 5, -7, 6]
In[5]:=
BR[Knot[8, 6]]
Out[5]=  
BR[4, {-1, -1, -1, -1, -2, 1, 3, -2, 3}]
In[6]:=
alex = Alexander[Knot[8, 6]][t]
Out[6]=  
     2    6            2

-7 - -- + - + 6 t - 2 t

     2   t
t
In[7]:=
Conway[Knot[8, 6]][z]
Out[7]=  
       2      4
1 - 2 z  - 2 z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=  
{Knot[8, 6], Knot[11, NonAlternating, 20], 
  Knot[11, NonAlternating, 151], Knot[11, NonAlternating, 152]}
In[9]:=
{KnotDet[Knot[8, 6]], KnotSignature[Knot[8, 6]]}
Out[9]=  
{23, -2}
In[10]:=
J=Jones[Knot[8, 6]][q]
Out[10]=  
      -7   2    3    4    4    4    3

-1 + q - -- + -- - -- + -- - -- + - + q

           6    5    4    3    2   q
q q q q q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=  
{Knot[8, 6]}
In[12]:=
A2Invariant[Knot[8, 6]][q]
Out[12]=  
     -22    -16    -14    -10    -8    -4   2     2    4

1 + q + q - q - q - q - q + -- + q + q

                                            2
q
In[13]:=
Kauffman[Knot[8, 6]][a, z]
Out[13]=  
     2    4    6            3      5      7        2      2  2

2 + a - a - a - a z - 3 a z - a z + a z - 3 z - 2 a z +

    4  2      6  2      8  2      3      3  3      5  3      7  3
 6 a  z  + 3 a  z  - 2 a  z  - a z  + 5 a  z  + 2 a  z  - 4 a  z  + 

  4      4  4      6  4    8  4      5      3  5    5  5      7  5
 z  - 6 a  z  - 4 a  z  + a  z  + a z  - 2 a  z  - a  z  + 2 a  z  + 

  2  6      4  6      6  6    3  7    5  7
a z + 3 a z + 2 a z + a z + a z
In[14]:=
{Vassiliev[2][Knot[8, 6]], Vassiliev[3][Knot[8, 6]]}
Out[14]=  
{0, 3}
In[15]:=
Kh[Knot[8, 6]][q, t]
Out[15]=  
 -3   3     1        1        1        2        1       2       2

q + - + ------ + ------ + ------ + ------ + ----- + ----- + ----- +

     q    15  6    13  5    11  5    11  4    9  4    9  3    7  3
         q   t    q   t    q   t    q   t    q  t    q  t    q  t

   2       2      2      2     t    3  2
 ----- + ----- + ---- + ---- + - + q  t
  7  2    5  2    5      3     q
q t q t q t q t