8 20

From Knot Atlas
Revision as of 19:15, 28 August 2005 by ScottTestRobot (talk | contribs)
Jump to navigationJump to search

8 19.gif

8_19

8 21.gif

8_21

8 20.gif Visit 8 20's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit 8 20's page at Knotilus!

Visit 8 20's page at the original Knot Atlas!

8_20 is also known as the pretzel knot P(3,-3,2).

Its complement contains no complete totally geodesic immersed surfaces.[citation needed]

This appears to be the Ashley/oysterman stopper knot of practical knot tying.




The Oysterman's stopper[1]

Knot presentations

Planar diagram presentation X4251 X8493 X5,12,6,13 X13,16,14,1 X9,14,10,15 X15,10,16,11 X11,6,12,7 X2837
Gauss code 1, -8, 2, -1, -3, 7, 8, -2, -5, 6, -7, 3, -4, 5, -6, 4
Dowker-Thistlethwaite code 4 8 -12 2 -14 -6 -16 -10
Conway Notation [3,21,2-]

Three dimensional invariants

Symmetry type Reversible
Unknotting number 1
3-genus 2
Bridge index 3
Super bridge index 4
Nakanishi index 1
Maximal Thurston-Bennequin number [-6][-2]
Hyperbolic Volume 4.1249
A-Polynomial See Data:8 20/A-polynomial

[edit Notes for 8 20's three dimensional invariants]
8_20 ribbon diagram from A. Kawauchi's text.

Ribbon diagram for 8_20

Four dimensional invariants

Smooth 4 genus
Topological 4 genus
Concordance genus
Rasmussen s-Invariant 0

[edit Notes for 8 20's four dimensional invariants]

Polynomial invariants

Alexander polynomial
Conway polynomial
2nd Alexander ideal (db, data sources)
Determinant and Signature { 9, 0 }
Jones polynomial
HOMFLY-PT polynomial (db, data sources)
Kauffman polynomial (db, data sources)
The A2 invariant
The G2 invariant

Vassiliev invariants

V2 and V3: (2, -2)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 0 is the signature of 8 20. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-5-4-3-2-101χ
3      1-1
1     1 1
-1    12 1
-3   1   1
-5   1   1
-7 11    0
-9       0
-111      -1
Integral Khovanov Homology

(db, data source)

  

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 17, 2005, 14:44:34)...
In[2]:=
Crossings[Knot[8, 20]]
Out[2]=  
8
In[3]:=
PD[Knot[8, 20]]
Out[3]=  
PD[X[4, 2, 5, 1], X[8, 4, 9, 3], X[5, 12, 6, 13], X[13, 16, 14, 1], 
  X[9, 14, 10, 15], X[15, 10, 16, 11], X[11, 6, 12, 7], X[2, 8, 3, 7]]
In[4]:=
GaussCode[Knot[8, 20]]
Out[4]=  
GaussCode[1, -8, 2, -1, -3, 7, 8, -2, -5, 6, -7, 3, -4, 5, -6, 4]
In[5]:=
BR[Knot[8, 20]]
Out[5]=  
BR[3, {1, 1, 1, -2, -1, -1, -1, -2}]
In[6]:=
alex = Alexander[Knot[8, 20]][t]
Out[6]=  
     -2   2          2

3 + t - - - 2 t + t

t
In[7]:=
Conway[Knot[8, 20]][z]
Out[7]=  
       2    4
1 + 2 z  + z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=  
{Knot[8, 20], Knot[10, 140], Knot[11, NonAlternating, 73], 
  Knot[11, NonAlternating, 74]}
In[9]:=
{KnotDet[Knot[8, 20]], KnotSignature[Knot[8, 20]]}
Out[9]=  
{9, 0}
In[10]:=
J=Jones[Knot[8, 20]][q]
Out[10]=  
     -5    -4    -3   2    1

2 - q + q - q + -- - - - q

                      2   q
q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=  
{Knot[8, 20]}
In[12]:=
A2Invariant[Knot[8, 20]][q]
Out[12]=  
  -16    -14    -12   2    2    2     -2    4

-q - q - q + -- + -- + -- + q - q

                      8    6    4
q q q
In[13]:=
Kauffman[Knot[8, 20]][a, z]
Out[13]=  
        2      4   z              3        5        2      2  2

-1 - 4 a - 2 a + - + 3 a z + 5 a z + 3 a z + 2 z + 6 a z +

                  a

    4  2        3      3  3      5  3      2  4      4  4      5
 4 a  z  - 3 a z  - 7 a  z  - 4 a  z  - 4 a  z  - 4 a  z  + a z  + 

    3  5    5  5    2  6    4  6
2 a z + a z + a z + a z
In[14]:=
{Vassiliev[2][Knot[8, 20]], Vassiliev[3][Knot[8, 20]]}
Out[14]=  
{0, -2}
In[15]:=
Kh[Knot[8, 20]][q, t]
Out[15]=  
2         1        1       1       1       1      1     3

- + q + ------ + ----- + ----- + ----- + ----- + --- + q t q 11 5 7 4 7 3 5 2 3 2 q t

q t q t q t q t q t