9 32
|
|
![]() |
Visit 9 32's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)
Visit 9 32's page at Knotilus! Visit 9 32's page at the original Knot Atlas! |
Knot presentations
Planar diagram presentation | X1425 X13,18,14,1 X3948 X9,3,10,2 X7,15,8,14 X15,11,16,10 X5,12,6,13 X11,17,12,16 X17,7,18,6 |
Gauss code | -1, 4, -3, 1, -7, 9, -5, 3, -4, 6, -8, 7, -2, 5, -6, 8, -9, 2 |
Dowker-Thistlethwaite code | 4 8 12 14 2 16 18 10 6 |
Conway Notation | [.21.20] |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
Alexander polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^3-6 t^2+14 t-17+14 t^{-1} -6 t^{-2} + t^{-3} } |
Conway polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^6-z^2+1} |
2nd Alexander ideal (db, data sources) | |
Determinant and Signature | { 59, 2 } |
Jones polynomial | |
HOMFLY-PT polynomial (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^6 a^{-2} +3 z^4 a^{-2} -2 z^4 a^{-4} -z^4+3 z^2 a^{-2} -4 z^2 a^{-4} +z^2 a^{-6} -z^2+ a^{-2} -2 a^{-4} + a^{-6} +1} |
Kauffman polynomial (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2 z^8 a^{-2} +2 z^8 a^{-4} +5 z^7 a^{-1} +10 z^7 a^{-3} +5 z^7 a^{-5} +6 z^6 a^{-2} +7 z^6 a^{-4} +5 z^6 a^{-6} +4 z^6+a z^5-9 z^5 a^{-1} -18 z^5 a^{-3} -5 z^5 a^{-5} +3 z^5 a^{-7} -19 z^4 a^{-2} -18 z^4 a^{-4} -6 z^4 a^{-6} +z^4 a^{-8} -8 z^4-a z^3+3 z^3 a^{-1} +9 z^3 a^{-3} +2 z^3 a^{-5} -3 z^3 a^{-7} +10 z^2 a^{-2} +12 z^2 a^{-4} +4 z^2 a^{-6} -z^2 a^{-8} +3 z^2-z a^{-1} -2 z a^{-3} +z a^{-7} - a^{-2} -2 a^{-4} - a^{-6} +1} |
The A2 invariant | |
The G2 invariant |
A1 Invariants.
Weight | Invariant |
---|---|
1 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^5+3 q^3-2 q+3 q^{-1} - q^{-3} + q^{-7} -3 q^{-9} +3 q^{-11} -2 q^{-13} + q^{-15} } |
2 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{16}-3 q^{14}-2 q^{12}+11 q^{10}-4 q^8-14 q^6+18 q^4+5 q^2-23+13 q^{-2} +13 q^{-4} -19 q^{-6} + q^{-8} +13 q^{-10} -5 q^{-12} -10 q^{-14} +6 q^{-16} +13 q^{-18} -17 q^{-20} -5 q^{-22} +25 q^{-24} -13 q^{-26} -13 q^{-28} +19 q^{-30} -3 q^{-32} -9 q^{-34} +6 q^{-36} -2 q^{-40} + q^{-42} } |
3 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{33}+3 q^{31}+2 q^{29}-7 q^{27}-10 q^{25}+8 q^{23}+30 q^{21}-5 q^{19}-48 q^{17}-18 q^{15}+66 q^{13}+54 q^{11}-67 q^9-93 q^7+50 q^5+124 q^3-14 q-143 q^{-1} -23 q^{-3} +139 q^{-5} +56 q^{-7} -117 q^{-9} -80 q^{-11} +93 q^{-13} +90 q^{-15} -59 q^{-17} -93 q^{-19} +26 q^{-21} +87 q^{-23} +13 q^{-25} -83 q^{-27} -52 q^{-29} +69 q^{-31} +93 q^{-33} -48 q^{-35} -125 q^{-37} +16 q^{-39} +147 q^{-41} +21 q^{-43} -146 q^{-45} -52 q^{-47} +117 q^{-49} +75 q^{-51} -83 q^{-53} -76 q^{-55} +46 q^{-57} +60 q^{-59} -16 q^{-61} -39 q^{-63} +3 q^{-65} +21 q^{-67} - q^{-69} -8 q^{-71} +3 q^{-75} -2 q^{-79} + q^{-81} } |
4 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{56}-3 q^{54}-2 q^{52}+7 q^{50}+6 q^{48}+6 q^{46}-24 q^{44}-31 q^{42}+11 q^{40}+45 q^{38}+83 q^{36}-29 q^{34}-139 q^{32}-103 q^{30}+35 q^{28}+282 q^{26}+170 q^{24}-155 q^{22}-379 q^{20}-280 q^{18}+334 q^{16}+561 q^{14}+220 q^{12}-448 q^{10}-794 q^8-75 q^6+684 q^4+799 q^2-33-989 q^{-2} -661 q^{-4} +321 q^{-6} +1039 q^{-8} +514 q^{-10} -697 q^{-12} -919 q^{-14} -162 q^{-16} +832 q^{-18} +751 q^{-20} -263 q^{-22} -793 q^{-24} -418 q^{-26} +472 q^{-28} +692 q^{-30} +74 q^{-32} -546 q^{-34} -518 q^{-36} +131 q^{-38} +573 q^{-40} +390 q^{-42} -277 q^{-44} -629 q^{-46} -287 q^{-48} +418 q^{-50} +776 q^{-52} +124 q^{-54} -670 q^{-56} -794 q^{-58} +49 q^{-60} +1005 q^{-62} +652 q^{-64} -376 q^{-66} -1079 q^{-68} -494 q^{-70} +763 q^{-72} +929 q^{-74} +169 q^{-76} -815 q^{-78} -774 q^{-80} +197 q^{-82} +673 q^{-84} +469 q^{-86} -269 q^{-88} -552 q^{-90} -138 q^{-92} +212 q^{-94} +330 q^{-96} +32 q^{-98} -191 q^{-100} -111 q^{-102} -5 q^{-104} +105 q^{-106} +40 q^{-108} -32 q^{-110} -20 q^{-112} -16 q^{-114} +18 q^{-116} +7 q^{-118} -6 q^{-120} + q^{-122} -3 q^{-124} +3 q^{-126} -2 q^{-130} + q^{-132} } |
5 |
A2 Invariants.
Weight | Invariant |
---|---|
1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^6+2 q^4+1+3 q^{-2} -2 q^{-4} +2 q^{-6} -2 q^{-8} -2 q^{-14} +2 q^{-16} - q^{-18} + q^{-22} } |
1,1 | |
2,0 |
A3 Invariants.
Weight | Invariant |
---|---|
0,1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{14}-3 q^{12}+q^{10}+5 q^8-10 q^6+7 q^4+10 q^2-14+11 q^{-2} +11 q^{-4} -17 q^{-6} +4 q^{-8} +8 q^{-10} -10 q^{-12} -3 q^{-14} +4 q^{-16} +3 q^{-18} -5 q^{-20} -5 q^{-22} +14 q^{-24} -6 q^{-26} -12 q^{-28} +19 q^{-30} -5 q^{-32} -11 q^{-34} +14 q^{-36} -2 q^{-38} -7 q^{-40} +5 q^{-42} -2 q^{-46} + q^{-48} } |
1,0,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^7+2 q^5-q^3+3 q+3 q^{-3} - q^{-5} + q^{-7} - q^{-11} -2 q^{-15} + q^{-17} -3 q^{-19} +2 q^{-21} - q^{-23} + q^{-25} + q^{-29} } |
A4 Invariants.
Weight | Invariant |
---|---|
0,1,0,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{16}-2 q^{14}-q^{12}+4 q^{10}-3 q^8-4 q^6+9 q^4+6 q^2-7+4 q^{-2} +16 q^{-4} -13 q^{-8} +7 q^{-10} +10 q^{-12} -17 q^{-14} -11 q^{-16} +13 q^{-18} -6 q^{-20} -13 q^{-22} +11 q^{-24} +8 q^{-26} -10 q^{-28} + q^{-30} +14 q^{-32} -4 q^{-34} -12 q^{-36} +8 q^{-38} +9 q^{-40} -11 q^{-42} -4 q^{-44} +10 q^{-46} + q^{-48} -6 q^{-50} +3 q^{-54} -2 q^{-58} + q^{-62} } |
1,0,0,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^8+2 q^6-q^4+2 q^2+2+3 q^{-4} - q^{-6} +2 q^{-8} - q^{-10} + q^{-12} - q^{-14} -2 q^{-18} - q^{-20} -3 q^{-24} +2 q^{-26} - q^{-28} + q^{-30} + q^{-32} + q^{-36} } |
B2 Invariants.
Weight | Invariant |
---|---|
0,1 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{14}+3 q^{12}-7 q^{10}+11 q^8-14 q^6+19 q^4-18 q^2+18-13 q^{-2} +9 q^{-4} + q^{-6} -10 q^{-8} +20 q^{-10} -28 q^{-12} +33 q^{-14} -36 q^{-16} +33 q^{-18} -29 q^{-20} +21 q^{-22} -12 q^{-24} +2 q^{-26} +6 q^{-28} -13 q^{-30} +17 q^{-32} -19 q^{-34} +18 q^{-36} -14 q^{-38} +11 q^{-40} -7 q^{-42} +4 q^{-44} -2 q^{-46} + q^{-48} } |
1,0 |
D4 Invariants.
Weight | Invariant |
---|---|
1,0,0,0 |
G2 Invariants.
Weight | Invariant |
---|---|
1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{32}-3 q^{30}+7 q^{28}-13 q^{26}+13 q^{24}-9 q^{22}-6 q^{20}+30 q^{18}-50 q^{16}+66 q^{14}-56 q^{12}+17 q^{10}+39 q^8-93 q^6+126 q^4-112 q^2+58+22 q^{-2} -92 q^{-4} +126 q^{-6} -106 q^{-8} +48 q^{-10} +29 q^{-12} -83 q^{-14} +89 q^{-16} -47 q^{-18} -23 q^{-20} +92 q^{-22} -122 q^{-24} +101 q^{-26} -35 q^{-28} -53 q^{-30} +131 q^{-32} -173 q^{-34} +158 q^{-36} -91 q^{-38} -6 q^{-40} +98 q^{-42} -157 q^{-44} +157 q^{-46} -103 q^{-48} +19 q^{-50} +58 q^{-52} -102 q^{-54} +89 q^{-56} -33 q^{-58} -39 q^{-60} +90 q^{-62} -94 q^{-64} +49 q^{-66} +22 q^{-68} -90 q^{-70} +125 q^{-72} -111 q^{-74} +63 q^{-76} + q^{-78} -59 q^{-80} +88 q^{-82} -86 q^{-84} +64 q^{-86} -26 q^{-88} -5 q^{-90} +25 q^{-92} -33 q^{-94} +30 q^{-96} -21 q^{-98} +12 q^{-100} -2 q^{-102} -4 q^{-104} +5 q^{-106} -6 q^{-108} +4 q^{-110} -2 q^{-112} + q^{-114} } |
.
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["9 32"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^3-6 t^2+14 t-17+14 t^{-1} -6 t^{-2} + t^{-3} } |
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^6-z^2+1} |
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 59, 2 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^6 a^{-2} +3 z^4 a^{-2} -2 z^4 a^{-4} -z^4+3 z^2 a^{-2} -4 z^2 a^{-4} +z^2 a^{-6} -z^2+ a^{-2} -2 a^{-4} + a^{-6} +1} |
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2 z^8 a^{-2} +2 z^8 a^{-4} +5 z^7 a^{-1} +10 z^7 a^{-3} +5 z^7 a^{-5} +6 z^6 a^{-2} +7 z^6 a^{-4} +5 z^6 a^{-6} +4 z^6+a z^5-9 z^5 a^{-1} -18 z^5 a^{-3} -5 z^5 a^{-5} +3 z^5 a^{-7} -19 z^4 a^{-2} -18 z^4 a^{-4} -6 z^4 a^{-6} +z^4 a^{-8} -8 z^4-a z^3+3 z^3 a^{-1} +9 z^3 a^{-3} +2 z^3 a^{-5} -3 z^3 a^{-7} +10 z^2 a^{-2} +12 z^2 a^{-4} +4 z^2 a^{-6} -z^2 a^{-8} +3 z^2-z a^{-1} -2 z a^{-3} +z a^{-7} - a^{-2} -2 a^{-4} - a^{-6} +1} |
Vassiliev invariants
V2 and V3: | (-1, -2) |
V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^rq^j} are shown, along with their alternating sums Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \chi} (fixed Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j} , alternation over Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r} ). The squares with yellow highlighting are those on the "critical diagonals", where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j-2r=s+1} or Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j-2r=s-1} , where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s=} 2 is the signature of 9 32. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session.
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \textrm{Include}(\textrm{ColouredJonesM.mhtml})}
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 17, 2005, 14:44:34)... | |
In[2]:= | Crossings[Knot[9, 32]] |
Out[2]= | 9 |
In[3]:= | PD[Knot[9, 32]] |
Out[3]= | PD[X[1, 4, 2, 5], X[13, 18, 14, 1], X[3, 9, 4, 8], X[9, 3, 10, 2],X[7, 15, 8, 14], X[15, 11, 16, 10], X[5, 12, 6, 13],X[11, 17, 12, 16], X[17, 7, 18, 6]] |
In[4]:= | GaussCode[Knot[9, 32]] |
Out[4]= | GaussCode[-1, 4, -3, 1, -7, 9, -5, 3, -4, 6, -8, 7, -2, 5, -6, 8, -9, 2] |
In[5]:= | BR[Knot[9, 32]] |
Out[5]= | BR[4, {1, 1, -2, 1, -2, 1, 3, -2, 3}] |
In[6]:= | alex = Alexander[Knot[9, 32]][t] |
Out[6]= | -3 6 14 2 3 |
In[7]:= | Conway[Knot[9, 32]][z] |
Out[7]= | 2 6 1 - z + z |
In[8]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[8]= | {Knot[9, 32], Knot[11, NonAlternating, 52], Knot[11, NonAlternating, 124]} |
In[9]:= | {KnotDet[Knot[9, 32]], KnotSignature[Knot[9, 32]]} |
Out[9]= | {59, 2} |
In[10]:= | J=Jones[Knot[9, 32]][q] |
Out[10]= | -2 4 2 3 4 5 6 7 |
In[11]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[11]= | {Knot[9, 32]} |
In[12]:= | A2Invariant[Knot[9, 32]][q] |
Out[12]= | -6 2 2 4 6 8 14 16 18 22 |
In[13]:= | Kauffman[Knot[9, 32]][a, z] |
Out[13]= | 2 2 2 2-6 2 -2 z 2 z z 2 z 4 z 12 z 10 z |
In[14]:= | {Vassiliev[2][Knot[9, 32]], Vassiliev[3][Knot[9, 32]]} |
Out[14]= | {0, -2} |
In[15]:= | Kh[Knot[9, 32]][q, t] |
Out[15]= | 3 1 3 1 3 3 q 3 5 |