10 145
|
|
![]() |
Visit 10 145's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)
Visit 10 145's page at Knotilus! Visit 10 145's page at the original Knot Atlas! |
10 145 Further Notes and Views
Knot presentations
Planar diagram presentation | X4251 X5,12,6,13 X8394 X2,9,3,10 X11,16,12,17 X17,10,18,11 X7,18,8,19 X13,20,14,1 X19,14,20,15 X15,6,16,7 |
Gauss code | 1, -4, 3, -1, -2, 10, -7, -3, 4, 6, -5, 2, -8, 9, -10, 5, -6, 7, -9, 8 |
Dowker-Thistlethwaite code | 4 8 -12 -18 2 -16 -20 -6 -10 -14 |
Conway Notation | [22,3,3-] |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
Alexander polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^2+t-3+ t^{-1} + t^{-2} } |
Conway polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^4+5 z^2+1} |
2nd Alexander ideal (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \{1\}} |
Determinant and Signature | { 3, -2 } |
Jones polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{-2} + q^{-7} - q^{-8} + q^{-9} - q^{-10} } |
HOMFLY-PT polynomial (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -a^{10}+z^2 a^8+a^8-a^6+z^4 a^4+4 z^2 a^4+2 a^4} |
Kauffman polynomial (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^7 a^{11}-6 z^5 a^{11}+10 z^3 a^{11}-5 z a^{11}+z^8 a^{10}-6 z^6 a^{10}+10 z^4 a^{10}-6 z^2 a^{10}+a^{10}+2 z^7 a^9-12 z^5 a^9+18 z^3 a^9-6 z a^9+z^8 a^8-6 z^6 a^8+9 z^4 a^8-4 z^2 a^8+a^8+z^7 a^7-6 z^5 a^7+8 z^3 a^7-2 z a^7-2 z^2 a^6+a^6-z a^5+z^4 a^4-4 z^2 a^4+2 a^4} |
The A2 invariant | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{32}-q^{30}+q^{24}+q^{14}+q^{10}+q^8+q^6} |
The G2 invariant | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{156}+q^{152}-q^{148}+q^{142}-2 q^{138}-q^{130}-3 q^{128}-q^{126}+q^{124}-q^{122}-q^{120}-q^{118}-2 q^{116}+2 q^{114}-2 q^{112}-q^{110}+q^{108}+2 q^{104}+2 q^{102}+q^{98}+q^{96}+2 q^{92}+q^{88}+2 q^{82}-q^{78}-3 q^{76}+q^{74}-q^{72}-3 q^{66}+2 q^{64}+q^{62}-2 q^{60}-q^{54}+3 q^{52}+2 q^{48}+q^{46}+3 q^{42}+q^{38}+q^{32}+q^{30}} |
A1 Invariants.
Weight | Invariant |
---|---|
1 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{21}+q^{13}+q^5+q^3} |
2 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{60}-q^{56}-q^{46}+q^{44}+q^{42}-q^{40}-q^{34}-q^{32}-q^{30}-q^{28}+q^{26}+q^{24}+2 q^{22}-q^{18}+2 q^{16}-q^{12}+q^{10}+q^8+q^6} |
3 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{117}+q^{113}+q^{111}-q^{107}+q^{97}-q^{95}-2 q^{93}+2 q^{89}+2 q^{87}-q^{85}-q^{83}+q^{79}+2 q^{77}-2 q^{73}-q^{71}+q^{69}+q^{67}-2 q^{65}-q^{63}+q^{61}-q^{57}-q^{55}+q^{53}-q^{49}-q^{47}-q^{41}-q^{39}+2 q^{35}+2 q^{33}-q^{29}+2 q^{25}+2 q^{23}-q^{19}-q^{17}+q^{15}+q^{13}+q^{11}+q^9} |
A2 Invariants.
Weight | Invariant |
---|---|
1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{32}-q^{30}+q^{24}+q^{14}+q^{10}+q^8+q^6} |
1,1 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{84}+2 q^{80}-2 q^{74}-4 q^{72}-2 q^{68}+2 q^{66}+2 q^{64}+2 q^{62}+6 q^{60}-2 q^{58}-4 q^{54}-3 q^{52}-2 q^{50}-2 q^{48}+2 q^{46}-2 q^{44}+2 q^{42}-4 q^{40}+2 q^{38}-4 q^{36}+2 q^{34}+2 q^{32}-2 q^{30}+4 q^{28}+4 q^{24}+q^{20}+2 q^{18}+2 q^{16}+2 q^{14}+q^{12}} |
2,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{82}+q^{80}+q^{78}-q^{76}-q^{74}-q^{72}-q^{70}+q^{64}+q^{60}+q^{58}-q^{56}-q^{54}-q^{52}-2 q^{48}-2 q^{46}-q^{44}-2 q^{42}-q^{40}+2 q^{36}+q^{34}+2 q^{32}+2 q^{30}+q^{28}+q^{26}+q^{24}+q^{22}+2 q^{16}+q^{14}+q^{12}} |
A3 Invariants.
Weight | Invariant |
---|---|
0,1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{66}+q^{62}+q^{60}-2 q^{56}-q^{54}-2 q^{52}-3 q^{50}-q^{46}+2 q^{40}+q^{38}+q^{34}-q^{30}-q^{28}+q^{26}+q^{22}+3 q^{20}+q^{18}+2 q^{16}+q^{14}+q^{12}} |
1,0,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{43}-q^{41}-q^{39}+q^{33}+q^{31}-q^{25}+q^{19}+q^{17}+q^{15}+q^{13}+q^{11}+q^9} |
A4 Invariants.
Weight | Invariant |
---|---|
0,1,0,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{88}+q^{86}+q^{84}+q^{82}+q^{80}-q^{74}-2 q^{72}-2 q^{70}-2 q^{68}-3 q^{66}-3 q^{64}-2 q^{62}-2 q^{60}-2 q^{58}-q^{56}+2 q^{54}+2 q^{52}+3 q^{50}+4 q^{48}+2 q^{46}-q^{42}-2 q^{40}-3 q^{38}-q^{36}+q^{34}+2 q^{32}+3 q^{30}+3 q^{28}+4 q^{26}+2 q^{24}+2 q^{22}+q^{20}+q^{18}} |
1,0,0,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{54}-q^{52}-q^{50}-q^{48}+q^{42}+q^{40}+q^{38}-q^{32}-q^{30}+q^{24}+q^{22}+2 q^{20}+q^{18}+q^{16}+q^{14}+q^{12}} |
B2 Invariants.
Weight | Invariant |
---|---|
0,1 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{66}-q^{62}-q^{60}+q^{54}+q^{50}+q^{46}-q^{38}-q^{34}-q^{30}+q^{28}+q^{26}+q^{22}+q^{20}+q^{18}+q^{14}+q^{12}} |
1,0 |
D4 Invariants.
Weight | Invariant |
---|---|
1,0,0,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{90}+q^{86}+q^{84}+q^{82}-q^{78}-q^{76}-3 q^{74}-2 q^{72}-3 q^{70}-2 q^{68}-2 q^{66}+q^{60}+2 q^{58}+2 q^{56}+2 q^{54}+q^{52}+q^{50}-2 q^{44}-q^{42}-2 q^{40}+2 q^{32}+2 q^{30}+3 q^{28}+2 q^{26}+2 q^{24}+q^{22}+q^{20}+q^{18}} |
G2 Invariants.
Weight | Invariant |
---|---|
1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{156}+q^{152}-q^{148}+q^{142}-2 q^{138}-q^{130}-3 q^{128}-q^{126}+q^{124}-q^{122}-q^{120}-q^{118}-2 q^{116}+2 q^{114}-2 q^{112}-q^{110}+q^{108}+2 q^{104}+2 q^{102}+q^{98}+q^{96}+2 q^{92}+q^{88}+2 q^{82}-q^{78}-3 q^{76}+q^{74}-q^{72}-3 q^{66}+2 q^{64}+q^{62}-2 q^{60}-q^{54}+3 q^{52}+2 q^{48}+q^{46}+3 q^{42}+q^{38}+q^{32}+q^{30}} |
.
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["10 145"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^2+t-3+ t^{-1} + t^{-2} } |
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^4+5 z^2+1} |
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \{1\}} |
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 3, -2 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{-2} + q^{-7} - q^{-8} + q^{-9} - q^{-10} } |
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -a^{10}+z^2 a^8+a^8-a^6+z^4 a^4+4 z^2 a^4+2 a^4} |
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^7 a^{11}-6 z^5 a^{11}+10 z^3 a^{11}-5 z a^{11}+z^8 a^{10}-6 z^6 a^{10}+10 z^4 a^{10}-6 z^2 a^{10}+a^{10}+2 z^7 a^9-12 z^5 a^9+18 z^3 a^9-6 z a^9+z^8 a^8-6 z^6 a^8+9 z^4 a^8-4 z^2 a^8+a^8+z^7 a^7-6 z^5 a^7+8 z^3 a^7-2 z a^7-2 z^2 a^6+a^6-z a^5+z^4 a^4-4 z^2 a^4+2 a^4} |
Vassiliev invariants
V2 and V3: | (5, -12) |
V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^rq^j} are shown, along with their alternating sums Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \chi} (fixed , alternation over Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r} ). The squares with yellow highlighting are those on the "critical diagonals", where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j-2r=s+1} or Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j-2r=s-1} , where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s=} -2 is the signature of 10 145. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session.
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \textrm{Include}(\textrm{ColouredJonesM.mhtml})}
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 17, 2005, 14:44:34)... | |
In[2]:= | Crossings[Knot[10, 145]] |
Out[2]= | 10 |
In[3]:= | PD[Knot[10, 145]] |
Out[3]= | PD[X[4, 2, 5, 1], X[5, 12, 6, 13], X[8, 3, 9, 4], X[2, 9, 3, 10],X[11, 16, 12, 17], X[17, 10, 18, 11], X[7, 18, 8, 19],X[13, 20, 14, 1], X[19, 14, 20, 15], X[15, 6, 16, 7]] |
In[4]:= | GaussCode[Knot[10, 145]] |
Out[4]= | GaussCode[1, -4, 3, -1, -2, 10, -7, -3, 4, 6, -5, 2, -8, 9, -10, 5, -6, 7, -9, 8] |
In[5]:= | BR[Knot[10, 145]] |
Out[5]= | BR[4, {-1, -1, -2, 1, -2, -1, -3, -2, 1, -2, -3}] |
In[6]:= | alex = Alexander[Knot[10, 145]][t] |
Out[6]= | -2 1 2 |
In[7]:= | Conway[Knot[10, 145]][z] |
Out[7]= | 2 4 1 + 5 z + z |
In[8]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[8]= | {Knot[10, 145]} |
In[9]:= | {KnotDet[Knot[10, 145]], KnotSignature[Knot[10, 145]]} |
Out[9]= | {3, -2} |
In[10]:= | J=Jones[Knot[10, 145]][q] |
Out[10]= | -10 -9 -8 -7 -2 -q + q - q + q + q |
In[11]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[11]= | {Knot[10, 145]} |
In[12]:= | A2Invariant[Knot[10, 145]][q] |
Out[12]= | -32 -30 -24 -14 -10 -8 -6 -q - q + q + q + q + q + q |
In[13]:= | Kauffman[Knot[10, 145]][a, z] |
Out[13]= | 4 6 8 10 5 7 9 11 4 2 |
In[14]:= | {Vassiliev[2][Knot[10, 145]], Vassiliev[3][Knot[10, 145]]} |
Out[14]= | {0, -12} |
In[15]:= | Kh[Knot[10, 145]][q, t] |
Out[15]= | -5 -3 1 1 1 1 1 1 |