10 147
|
|
|
|
Visit 10 147's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)
Visit 10 147's page at Knotilus! Visit 10 147's page at the original Knot Atlas! |
10 147 Further Notes and Views
Knot presentations
| Planar diagram presentation | X4251 X10,4,11,3 X5,14,6,15 X15,20,16,1 X12,7,13,8 X8,18,9,17 X19,7,20,6 X16,12,17,11 X18,13,19,14 X2,10,3,9 |
| Gauss code | 1, -10, 2, -1, -3, 7, 5, -6, 10, -2, 8, -5, 9, 3, -4, -8, 6, -9, -7, 4 |
| Dowker-Thistlethwaite code | 4 10 -14 12 2 16 18 -20 8 -6 |
| Conway Notation | [211,3,21-] |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
| Alexander polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -2 t^2+7 t-9+7 t^{-1} -2 t^{-2} } |
| Conway polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -2 z^4-z^2+1} |
| 2nd Alexander ideal (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \{1\}} |
| Determinant and Signature | { 27, 2 } |
| Jones polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^5-3 q^4+4 q^3-4 q^2+5 q-4+3 q^{-1} -2 q^{-2} + q^{-3} } |
| HOMFLY-PT polynomial (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -z^4 a^{-2} -z^4+a^2 z^2-z^2 a^{-2} +z^2 a^{-4} -2 z^2+a^2+ a^{-2} -1} |
| Kauffman polynomial (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^8 a^{-2} +z^8+2 a z^7+4 z^7 a^{-1} +2 z^7 a^{-3} +a^2 z^6-z^6 a^{-2} +z^6 a^{-4} -z^6-8 a z^5-14 z^5 a^{-1} -6 z^5 a^{-3} -4 a^2 z^4-2 z^4 a^{-2} -6 z^4+8 a z^3+13 z^3 a^{-1} +8 z^3 a^{-3} +3 z^3 a^{-5} +4 a^2 z^2+z^2 a^{-2} +z^2 a^{-6} +6 z^2-2 a z-4 z a^{-1} -3 z a^{-3} -z a^{-5} -a^2- a^{-2} -1} |
| The A2 invariant | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{10}+q^4-q^2+2 q^{-6} + q^{-10} - q^{-12} - q^{-14} + q^{-16} } |
| The G2 invariant | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{46}-q^{44}+3 q^{42}-4 q^{40}+3 q^{38}-q^{36}-3 q^{34}+10 q^{32}-11 q^{30}+12 q^{28}-6 q^{26}-5 q^{24}+12 q^{22}-14 q^{20}+11 q^{18}-5 q^{16}-4 q^{14}+12 q^{12}-9 q^{10}+3 q^8+5 q^6-13 q^4+14 q^2-7-5 q^{-2} +10 q^{-4} -14 q^{-6} +18 q^{-8} -11 q^{-10} +4 q^{-12} +4 q^{-14} -13 q^{-16} +15 q^{-18} -13 q^{-20} +7 q^{-22} -7 q^{-26} +11 q^{-28} -6 q^{-30} +3 q^{-32} +6 q^{-34} -14 q^{-36} +11 q^{-38} - q^{-40} -7 q^{-42} +13 q^{-44} -15 q^{-46} +11 q^{-48} + q^{-50} -6 q^{-52} +7 q^{-54} -11 q^{-56} +7 q^{-58} -3 q^{-62} +2 q^{-64} -2 q^{-66} + q^{-68} + q^{-70} +2 q^{-72} - q^{-74} - q^{-78} - q^{-84} + q^{-86} } |
A1 Invariants.
| Weight | Invariant |
|---|---|
| 1 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^7-q^5+q^3-q+ q^{-1} + q^{-3} + q^{-7} -2 q^{-9} + q^{-11} } |
| 2 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{22}-q^{20}-2 q^{18}+3 q^{16}+q^{14}-4 q^{12}+2 q^{10}+4 q^8-3 q^6-2 q^4+3 q^2-1-3 q^{-2} +3 q^{-4} +3 q^{-6} -2 q^{-8} + q^{-10} +4 q^{-12} - q^{-14} -5 q^{-16} +2 q^{-18} + q^{-20} -4 q^{-22} +2 q^{-24} +2 q^{-26} - q^{-28} } |
| 3 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{45}-q^{43}-2 q^{41}+4 q^{37}+3 q^{35}-5 q^{33}-6 q^{31}+3 q^{29}+9 q^{27}+2 q^{25}-10 q^{23}-8 q^{21}+6 q^{19}+12 q^{17}+q^{15}-13 q^{13}-7 q^{11}+11 q^9+13 q^7-6 q^5-15 q^3+3 q+14 q^{-1} + q^{-3} -15 q^{-5} - q^{-7} +14 q^{-9} +3 q^{-11} -11 q^{-13} -3 q^{-15} +10 q^{-17} +7 q^{-19} -5 q^{-21} -11 q^{-23} - q^{-25} +10 q^{-27} +8 q^{-29} -12 q^{-31} -14 q^{-33} +7 q^{-35} +19 q^{-37} - q^{-39} -15 q^{-41} -3 q^{-43} +9 q^{-45} +6 q^{-47} -6 q^{-49} -4 q^{-51} + q^{-53} +2 q^{-55} + q^{-57} - q^{-59} } |
A2 Invariants.
| Weight | Invariant |
|---|---|
| 1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{10}+q^4-q^2+2 q^{-6} + q^{-10} - q^{-12} - q^{-14} + q^{-16} } |
| 1,1 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{28}-2 q^{26}+6 q^{24}-12 q^{22}+19 q^{20}-28 q^{18}+36 q^{16}-38 q^{14}+33 q^{12}-24 q^{10}+12 q^8+14 q^6-31 q^4+48 q^2-60+62 q^{-2} -69 q^{-4} +56 q^{-6} -42 q^{-8} +32 q^{-10} -3 q^{-12} -6 q^{-14} +28 q^{-16} -38 q^{-18} +38 q^{-20} -40 q^{-22} +24 q^{-24} -18 q^{-26} +11 q^{-28} -2 q^{-30} -2 q^{-32} +2 q^{-34} +2 q^{-36} -2 q^{-42} + q^{-44} } |
| 2,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{28}-q^{24}-q^{22}+q^{20}+2 q^{18}-q^{16}-q^{14}+q^{12}+2 q^{10}+q^8-2 q^6+q^2-1-2 q^{-2} + q^{-6} + q^{-8} +2 q^{-10} +2 q^{-12} +2 q^{-14} +2 q^{-16} +2 q^{-18} - q^{-20} -5 q^{-22} - q^{-24} -2 q^{-28} - q^{-30} +2 q^{-32} +3 q^{-34} - q^{-38} } |
A3 Invariants.
| Weight | Invariant |
|---|---|
| 0,1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{20}-q^{18}+q^{16}+q^{14}-2 q^{12}+2 q^{10}-q^6+3 q^4-1+2 q^{-2} -2 q^{-6} + q^{-8} + q^{-12} - q^{-14} +2 q^{-18} -2 q^{-20} + q^{-22} +3 q^{-24} -2 q^{-26} +2 q^{-30} -2 q^{-32} - q^{-34} + q^{-36} } |
| 1,0,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{13}+q^9+q^5-q^3- q^{-1} + q^{-7} +2 q^{-9} + q^{-13} - q^{-15} - q^{-19} + q^{-21} } |
A4 Invariants.
| Weight | Invariant |
|---|---|
| 0,1,0,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{26}+2 q^{20}+q^{18}-2 q^{16}+q^{12}-2 q^{10}-2 q^8+3 q^6+4 q^4-q^2+2+6 q^{-2} -4 q^{-6} - q^{-10} -5 q^{-12} - q^{-14} +2 q^{-16} + q^{-18} - q^{-20} +4 q^{-22} +3 q^{-24} -2 q^{-26} +3 q^{-30} -2 q^{-34} + q^{-36} + q^{-38} - q^{-40} -2 q^{-42} + q^{-46} } |
| 1,0,0,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{16}+q^{12}+q^{10}+q^6-q^4-1- q^{-2} + q^{-8} + q^{-10} +2 q^{-12} + q^{-16} - q^{-18} - q^{-24} + q^{-26} } |
B2 Invariants.
| Weight | Invariant |
|---|---|
| 0,1 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{20}-q^{18}+3 q^{16}-3 q^{14}+4 q^{12}-4 q^{10}+4 q^8-3 q^6+q^4-3+4 q^{-2} -6 q^{-4} +8 q^{-6} -7 q^{-8} +8 q^{-10} -5 q^{-12} +5 q^{-14} -2 q^{-16} +2 q^{-20} -3 q^{-22} +3 q^{-24} -4 q^{-26} +4 q^{-28} -4 q^{-30} +2 q^{-32} - q^{-34} + q^{-36} } |
| 1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{34}-q^{30}-q^{28}+2 q^{26}+2 q^{24}-2 q^{22}-3 q^{20}+q^{18}+4 q^{16}+q^{14}-4 q^{12}-2 q^{10}+4 q^8+4 q^6-q^4-4 q^2+3 q^{-2} + q^{-4} -2 q^{-6} -2 q^{-8} +2 q^{-10} +2 q^{-12} - q^{-14} -3 q^{-16} +2 q^{-18} +4 q^{-20} -4 q^{-24} - q^{-26} +3 q^{-28} +2 q^{-30} -3 q^{-32} -3 q^{-34} +2 q^{-36} +4 q^{-38} -3 q^{-42} - q^{-44} +2 q^{-46} +3 q^{-48} - q^{-50} -2 q^{-52} - q^{-54} + q^{-58} } |
D4 Invariants.
| Weight | Invariant |
|---|---|
| 1,0,0,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{26}-q^{24}+2 q^{22}-2 q^{20}+4 q^{18}-3 q^{16}+3 q^{14}-3 q^{12}+4 q^{10}-2 q^8+q^6+3-3 q^{-2} +4 q^{-4} -5 q^{-6} +5 q^{-8} -6 q^{-10} +6 q^{-12} -6 q^{-14} +5 q^{-16} -4 q^{-18} +3 q^{-20} - q^{-22} + q^{-24} + q^{-26} - q^{-28} +3 q^{-30} -2 q^{-32} +4 q^{-34} -3 q^{-36} +2 q^{-38} -3 q^{-40} +3 q^{-42} -2 q^{-44} - q^{-48} + q^{-50} } |
G2 Invariants.
| Weight | Invariant |
|---|---|
| 1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{46}-q^{44}+3 q^{42}-4 q^{40}+3 q^{38}-q^{36}-3 q^{34}+10 q^{32}-11 q^{30}+12 q^{28}-6 q^{26}-5 q^{24}+12 q^{22}-14 q^{20}+11 q^{18}-5 q^{16}-4 q^{14}+12 q^{12}-9 q^{10}+3 q^8+5 q^6-13 q^4+14 q^2-7-5 q^{-2} +10 q^{-4} -14 q^{-6} +18 q^{-8} -11 q^{-10} +4 q^{-12} +4 q^{-14} -13 q^{-16} +15 q^{-18} -13 q^{-20} +7 q^{-22} -7 q^{-26} +11 q^{-28} -6 q^{-30} +3 q^{-32} +6 q^{-34} -14 q^{-36} +11 q^{-38} - q^{-40} -7 q^{-42} +13 q^{-44} -15 q^{-46} +11 q^{-48} + q^{-50} -6 q^{-52} +7 q^{-54} -11 q^{-56} +7 q^{-58} -3 q^{-62} +2 q^{-64} -2 q^{-66} + q^{-68} + q^{-70} +2 q^{-72} - q^{-74} - q^{-78} - q^{-84} + q^{-86} } |
.
KnotTheory`, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["10 147"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -2 t^2+7 t-9+7 t^{-1} -2 t^{-2} } |
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -2 z^4-z^2+1} |
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \{1\}} |
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 27, 2 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^5-3 q^4+4 q^3-4 q^2+5 q-4+3 q^{-1} -2 q^{-2} + q^{-3} } |
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -z^4 a^{-2} -z^4+a^2 z^2-z^2 a^{-2} +z^2 a^{-4} -2 z^2+a^2+ a^{-2} -1} |
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^8 a^{-2} +z^8+2 a z^7+4 z^7 a^{-1} +2 z^7 a^{-3} +a^2 z^6-z^6 a^{-2} +z^6 a^{-4} -z^6-8 a z^5-14 z^5 a^{-1} -6 z^5 a^{-3} -4 a^2 z^4-2 z^4 a^{-2} -6 z^4+8 a z^3+13 z^3 a^{-1} +8 z^3 a^{-3} +3 z^3 a^{-5} +4 a^2 z^2+z^2 a^{-2} +z^2 a^{-6} +6 z^2-2 a z-4 z a^{-1} -3 z a^{-3} -z a^{-5} -a^2- a^{-2} -1} |
Vassiliev invariants
| V2 and V3: | (-1, 0) |
| V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
| The coefficients of the monomials Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^rq^j} are shown, along with their alternating sums Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \chi} (fixed Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j} , alternation over Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r} ). The squares with yellow highlighting are those on the "critical diagonals", where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j-2r=s+1} or Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j-2r=s-1} , where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s=} 2 is the signature of 10 147. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \textrm{Include}(\textrm{ColouredJonesM.mhtml})}
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 17, 2005, 14:44:34)... | |
In[2]:= | Crossings[Knot[10, 147]] |
Out[2]= | 10 |
In[3]:= | PD[Knot[10, 147]] |
Out[3]= | PD[X[4, 2, 5, 1], X[10, 4, 11, 3], X[5, 14, 6, 15], X[15, 20, 16, 1],X[12, 7, 13, 8], X[8, 18, 9, 17], X[19, 7, 20, 6], X[16, 12, 17, 11],X[18, 13, 19, 14], X[2, 10, 3, 9]] |
In[4]:= | GaussCode[Knot[10, 147]] |
Out[4]= | GaussCode[1, -10, 2, -1, -3, 7, 5, -6, 10, -2, 8, -5, 9, 3, -4, -8, 6, -9, -7, 4] |
In[5]:= | BR[Knot[10, 147]] |
Out[5]= | BR[4, {1, 1, 1, -2, 1, -2, -3, 2, -1, 2, -3}] |
In[6]:= | alex = Alexander[Knot[10, 147]][t] |
Out[6]= | 2 7 2 |
In[7]:= | Conway[Knot[10, 147]][z] |
Out[7]= | 2 4 1 - z - 2 z |
In[8]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[8]= | {Knot[8, 11], Knot[10, 147], Knot[11, NonAlternating, 122]} |
In[9]:= | {KnotDet[Knot[10, 147]], KnotSignature[Knot[10, 147]]} |
Out[9]= | {27, 2} |
In[10]:= | J=Jones[Knot[10, 147]][q] |
Out[10]= | -3 2 3 2 3 4 5 |
In[11]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[11]= | {Knot[10, 147]} |
In[12]:= | A2Invariant[Knot[10, 147]][q] |
Out[12]= | -10 -4 -2 6 10 12 14 16 q + q - q + 2 q + q - q - q + q |
In[13]:= | Kauffman[Knot[10, 147]][a, z] |
Out[13]= | 2 2-2 2 z 3 z 4 z 2 z z 2 2 |
In[14]:= | {Vassiliev[2][Knot[10, 147]], Vassiliev[3][Knot[10, 147]]} |
Out[14]= | {0, 0} |
In[15]:= | Kh[Knot[10, 147]][q, t] |
Out[15]= | 3 1 1 1 2 1 2 2 q |


