10 157
|
|
Visit 10 157's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)
Visit 10 157's page at Knotilus! Visit 10 157's page at the original Knot Atlas! |
10 157 Further Notes and Views
Knot presentations
Planar diagram presentation | X1627 X10,4,11,3 X16,11,17,12 X7,15,8,14 X15,9,16,8 X13,1,14,20 X19,13,20,12 X18,6,19,5 X2,10,3,9 X4,18,5,17 |
Gauss code | -1, -9, 2, -10, 8, 1, -4, 5, 9, -2, 3, 7, -6, 4, -5, -3, 10, -8, -7, 6 |
Dowker-Thistlethwaite code | 6 -10 -18 14 -2 -16 20 8 -4 12 |
Conway Notation | [-3:20:20] |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
A1 Invariants.
Weight | Invariant |
---|---|
1 | |
2 | |
3 | |
5 | |
6 |
A2 Invariants.
Weight | Invariant |
---|---|
1,0 | |
1,1 | |
2,0 |
A3 Invariants.
Weight | Invariant |
---|---|
0,1,0 | |
1,0,0 | |
1,0,1 |
A4 Invariants.
Weight | Invariant |
---|---|
0,1,0,0 | |
1,0,0,0 |
B2 Invariants.
Weight | Invariant |
---|---|
0,1 | |
1,0 |
D4 Invariants.
Weight | Invariant |
---|---|
1,0,0,0 |
G2 Invariants.
Weight | Invariant |
---|---|
1,0 |
.
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["10 157"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 49, 4 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
Vassiliev invariants
V2 and V3: | (4, 8) |
V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 4 is the signature of 10 157. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session.
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 17, 2005, 14:44:34)... | |
In[2]:= | Crossings[Knot[10, 157]] |
Out[2]= | 10 |
In[3]:= | PD[Knot[10, 157]] |
Out[3]= | PD[X[1, 6, 2, 7], X[10, 4, 11, 3], X[16, 11, 17, 12], X[7, 15, 8, 14],X[15, 9, 16, 8], X[13, 1, 14, 20], X[19, 13, 20, 12],X[18, 6, 19, 5], X[2, 10, 3, 9], X[4, 18, 5, 17]] |
In[4]:= | GaussCode[Knot[10, 157]] |
Out[4]= | GaussCode[-1, -9, 2, -10, 8, 1, -4, 5, 9, -2, 3, 7, -6, 4, -5, -3, 10, -8, -7, 6] |
In[5]:= | BR[Knot[10, 157]] |
Out[5]= | BR[3, {1, 1, 1, 2, 2, -1, 2, -1, 2, 2}] |
In[6]:= | alex = Alexander[Knot[10, 157]][t] |
Out[6]= | -3 6 11 2 3 |
In[7]:= | Conway[Knot[10, 157]][z] |
Out[7]= | 2 6 1 + 4 z - z |
In[8]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[8]= | {Knot[10, 157]} |
In[9]:= | {KnotDet[Knot[10, 157]], KnotSignature[Knot[10, 157]]} |
Out[9]= | {49, 4} |
In[10]:= | J=Jones[Knot[10, 157]][q] |
Out[10]= | 2 3 4 5 6 7 8 9 10 2 q - 4 q + 7 q - 8 q + 9 q - 8 q + 6 q - 4 q + q |
In[11]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[11]= | {Knot[10, 157]} |
In[12]:= | A2Invariant[Knot[10, 157]][q] |
Out[12]= | 6 8 10 16 18 20 22 24 28 30 2 q - q + 2 q + 3 q - q + 2 q - 2 q - q - 2 q + q |
In[13]:= | Kauffman[Knot[10, 157]][a, z] |
Out[13]= | 2 2 2 3 3 3-8 2 4 z 4 z 2 z 7 z 5 z 4 z 8 z 6 z |
In[14]:= | {Vassiliev[2][Knot[10, 157]], Vassiliev[3][Knot[10, 157]]} |
Out[14]= | {0, 8} |
In[15]:= | Kh[Knot[10, 157]][q, t] |
Out[15]= | 3 5 5 7 7 2 9 2 9 3 11 3 |