8 5

From Knot Atlas
Revision as of 17:06, 29 August 2005 by DrorsRobot (talk | contribs)
Jump to navigationJump to search

8 4.gif

8_4

8 6.gif

8_6

8 5.gif Visit 8 5's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit 8 5's page at Knotilus!

Visit 8 5's page at the original Knot Atlas!

8 5 is also known as the pretzel knot P(3,3,2).



Symmetric alternative representation
Pretzel P(3,3,2) form Photo 01-09-2017 besalu.jpg.
Sum of 8.5 ; church of Besalu, Catalogna

Knot presentations

Planar diagram presentation X6271 X8493 X2837 X14,10,15,9 X12,5,13,6 X4,13,5,14 X16,12,1,11 X10,16,11,15
Gauss code 1, -3, 2, -6, 5, -1, 3, -2, 4, -8, 7, -5, 6, -4, 8, -7
Dowker-Thistlethwaite code 6 8 12 2 14 16 4 10
Conway Notation [3,3,2]

Minimum Braid Representative:

BraidPart1.gifBraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart1.gifBraidPart1.gifBraidPart0.gif
BraidPart2.gifBraidPart2.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart2.gifBraidPart2.gifBraidPart3.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gif

Length is 8, width is 3.

Braid index is 3.

A Morse Link Presentation:

8 5 ML.gif

Three dimensional invariants

Symmetry type Reversible
Unknotting number 2
3-genus 3
Bridge index 3
Super bridge index
Nakanishi index 1
Maximal Thurston-Bennequin number [1][-11]
Hyperbolic Volume 6.99719
A-Polynomial See Data:8 5/A-polynomial

[edit Notes for 8 5's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus
Topological 4 genus
Concordance genus
Rasmussen s-Invariant -4

[edit Notes for 8 5's four dimensional invariants]

Polynomial invariants

Alexander polynomial
Conway polynomial
2nd Alexander ideal (db, data sources)
Determinant and Signature { 21, 4 }
Jones polynomial
HOMFLY-PT polynomial (db, data sources)
Kauffman polynomial (db, data sources)
The A2 invariant
The G2 invariant

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {10_141, ...}

Same Jones Polynomial (up to mirroring, ): {...}

Vassiliev invariants

V2 and V3: (-1, -3)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 4 is the signature of 8 5. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-2-10123456χ
17        11
15       1 -1
13      21 1
11     21  -1
9    12   -1
7   22    0
5  11     0
3 13      2
1         0
-11        1
Integral Khovanov Homology

(db, data source)

  

The Coloured Jones Polynomials