In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 29, 2005, 15:27:48)... |
In[2]:= | PD[Knot[10, 68]] |
Out[2]= | PD[X[4, 2, 5, 1], X[12, 4, 13, 3], X[20, 13, 1, 14], X[16, 5, 17, 6],
X[8, 19, 9, 20], X[18, 9, 19, 10], X[10, 17, 11, 18],
X[14, 7, 15, 8], X[6, 15, 7, 16], X[2, 12, 3, 11]] |
In[3]:= | GaussCode[Knot[10, 68]] |
Out[3]= | GaussCode[1, -10, 2, -1, 4, -9, 8, -5, 6, -7, 10, -2, 3, -8, 9, -4, 7,
-6, 5, -3] |
In[4]:= | DTCode[Knot[10, 68]] |
Out[4]= | DTCode[4, 12, 16, 14, 18, 2, 20, 6, 10, 8] |
In[5]:= | br = BR[Knot[10, 68]] |
Out[5]= | BR[5, {1, 1, -2, 1, -2, -2, -3, 2, 2, -4, 3, -2, -4, -3}] |
In[6]:= | {First[br], Crossings[br]} |
Out[6]= | {5, 14} |
In[7]:= | BraidIndex[Knot[10, 68]] |
Out[7]= | 5 |
In[8]:= | Show[DrawMorseLink[Knot[10, 68]]] |
|  |
Out[8]= | -Graphics- |
In[9]:= | (#[Knot[10, 68]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex} |
Out[9]= | {Reversible, 2, 2, 3, NotAvailable, 1} |
In[10]:= | alex = Alexander[Knot[10, 68]][t] |
Out[10]= | 4 14 2
21 + -- - -- - 14 t + 4 t
2 t
t |
In[11]:= | Conway[Knot[10, 68]][z] |
Out[11]= | 2 4
1 + 2 z + 4 z |
In[12]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[12]= | {Knot[10, 31], Knot[10, 68]} |
In[13]:= | {KnotDet[Knot[10, 68]], KnotSignature[Knot[10, 68]]} |
Out[13]= | {57, 0} |
In[14]:= | Jones[Knot[10, 68]][q] |
Out[14]= | -7 2 4 7 8 9 9 2 3
8 - q + -- - -- + -- - -- + -- - - - 5 q + 3 q - q
6 5 4 3 2 q
q q q q q |
In[15]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[15]= | {Knot[10, 68]} |
In[16]:= | A2Invariant[Knot[10, 68]][q] |
Out[16]= | -22 2 2 -12 2 -6 -4 2 4 6 8 10
-q - --- + --- + q + -- - q + q + 2 q - 2 q + q + q - q
16 14 8
q q q |
In[17]:= | HOMFLYPT[Knot[10, 68]][a, z] |
Out[17]= | 2
2 4 6 z 2 2 4 2 6 2 4 2 4 4 4
a + a - a - -- + 3 a z + a z - a z + z + 2 a z + a z
2
a |
In[18]:= | Kauffman[Knot[10, 68]][a, z] |
Out[18]= | 2
2 4 6 3 5 7 2 z
-a + a + a - 2 a z - 6 a z - 8 a z - 4 a z + 4 z - -- +
2
a
3 3
2 2 4 2 6 2 z 3 z 3 3 3
7 a z - 5 a z - 7 a z + -- - ---- + 8 a z + 27 a z +
3 a
a
4
5 3 7 3 4 3 z 2 4 4 4 6 4
23 a z + 8 a z - 10 z + ---- - 9 a z + 17 a z + 13 a z +
2
a
5
5 z 5 3 5 5 5 7 5 6 2 6
---- - 14 a z - 30 a z - 16 a z - 5 a z + 7 z - 4 a z -
a
4 6 6 6 7 3 7 5 7 7 7 2 8
20 a z - 9 a z + 7 a z + 7 a z + a z + a z + 4 a z +
4 8 6 8 3 9 5 9
6 a z + 2 a z + a z + a z |
In[19]:= | {Vassiliev[2][Knot[10, 68]], Vassiliev[3][Knot[10, 68]]} |
Out[19]= | {2, -3} |
In[20]:= | Kh[Knot[10, 68]][q, t] |
Out[20]= | 4 1 1 1 3 1 4 3
- + 5 q + ------ + ------ + ------ + ------ + ----- + ----- + ----- +
q 15 7 13 6 11 6 11 5 9 5 9 4 7 4
q t q t q t q t q t q t q t
4 4 5 4 4 5 3 3 2
----- + ----- + ----- + ----- + ---- + --- + 2 q t + 3 q t + q t +
7 3 5 3 5 2 3 2 3 q t
q t q t q t q t q t
5 2 7 3
2 q t + q t |
In[21]:= | ColouredJones[Knot[10, 68], 2][q] |
Out[21]= | -21 2 -19 7 6 9 21 6 27 36
12 + q - --- - q + --- - --- - --- + --- - --- - --- + --- +
20 18 17 16 15 14 13 12
q q q q q q q q
3 49 41 19 64 36 34 64 24 38 51
--- - --- + -- + -- - -- + -- + -- - -- + -- + -- - -- + 28 q -
11 10 9 8 7 6 5 4 3 2 q
q q q q q q q q q q
2 3 4 5 6 7 8 9
30 q + 6 q + 12 q - 12 q + 4 q + 2 q - 3 q + q |