9 39

From Knot Atlas
Revision as of 17:12, 29 August 2005 by DrorsRobot (talk | contribs)
Jump to navigationJump to search

9 38.gif

9_38

9 40.gif

9_40

9 39.gif Visit 9 39's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit 9 39's page at Knotilus!

Visit 9 39's page at the original Knot Atlas!

9 39 Quick Notes


9 39 Further Notes and Views

Knot presentations

Planar diagram presentation X1627 X3,11,4,10 X7,18,8,1 X17,13,18,12 X9,17,10,16 X5,15,6,14 X15,5,16,4 X11,3,12,2 X13,9,14,8
Gauss code -1, 8, -2, 7, -6, 1, -3, 9, -5, 2, -8, 4, -9, 6, -7, 5, -4, 3
Dowker-Thistlethwaite code 6 10 14 18 16 2 8 4 12
Conway Notation [2:2:20]

Minimum Braid Representative:

BraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart2.gifBraidPart1.gifBraidPart4.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart1.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gif

Length is 12, width is 5.

Braid index is 5.

A Morse Link Presentation:

9 39 ML.gif

Three dimensional invariants

Symmetry type Reversible
Unknotting number 1
3-genus 2
Bridge index 3
Super bridge index
Nakanishi index 1
Maximal Thurston-Bennequin number [-1][-10]
Hyperbolic Volume 12.8103
A-Polynomial See Data:9 39/A-polynomial

[edit Notes for 9 39's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus
Topological 4 genus
Concordance genus
Rasmussen s-Invariant 2

[edit Notes for 9 39's four dimensional invariants]

Polynomial invariants

Alexander polynomial
Conway polynomial
2nd Alexander ideal (db, data sources)
Determinant and Signature { 55, 2 }
Jones polynomial
HOMFLY-PT polynomial (db, data sources)
Kauffman polynomial (db, data sources)
The A2 invariant
The G2 invariant

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {K11n162, ...}

Same Jones Polynomial (up to mirroring, ): {K11n11, K11n112, ...}

Vassiliev invariants

V2 and V3: (2, 4)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 2 is the signature of 9 39. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-2-101234567χ
17         1-1
15        2 2
13       41 -3
11      42  2
9     54   -1
7    54    1
5   35     2
3  35      -2
1 14       3
-1 2        -2
-31         1
Integral Khovanov Homology

(db, data source)

  

The Coloured Jones Polynomials