In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 29, 2005, 15:27:48)... |
In[2]:= | PD[Knot[9, 42]] |
Out[2]= | PD[X[1, 4, 2, 5], X[5, 10, 6, 11], X[3, 9, 4, 8], X[9, 3, 10, 2],
X[16, 12, 17, 11], X[14, 7, 15, 8], X[6, 15, 7, 16],
X[18, 14, 1, 13], X[12, 18, 13, 17]] |
In[3]:= | GaussCode[Knot[9, 42]] |
Out[3]= | GaussCode[-1, 4, -3, 1, -2, -7, 6, 3, -4, 2, 5, -9, 8, -6, 7, -5, 9, -8] |
In[4]:= | DTCode[Knot[9, 42]] |
Out[4]= | DTCode[4, 8, 10, -14, 2, -16, -18, -6, -12] |
In[5]:= | br = BR[Knot[9, 42]] |
Out[5]= | BR[4, {1, 1, 1, -2, -1, -1, 3, -2, 3}] |
In[6]:= | {First[br], Crossings[br]} |
Out[6]= | {4, 9} |
In[7]:= | BraidIndex[Knot[9, 42]] |
Out[7]= | 4 |
In[8]:= | Show[DrawMorseLink[Knot[9, 42]]] |
| |
Out[8]= | -Graphics- |
In[9]:= | (#[Knot[9, 42]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex} |
Out[9]= | {Reversible, 1, 2, 3, 4, 1} |
In[10]:= | alex = Alexander[Knot[9, 42]][t] |
Out[10]= | -2 2 2
-1 - t + - + 2 t - t
t |
In[11]:= | Conway[Knot[9, 42]][z] |
Out[11]= | 2 4
1 - 2 z - z |
In[12]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[12]= | {Knot[9, 42]} |
In[13]:= | {KnotDet[Knot[9, 42]], KnotSignature[Knot[9, 42]]} |
Out[13]= | {7, 2} |
In[14]:= | Jones[Knot[9, 42]][q] |
Out[14]= | -3 -2 1 2 3
-1 + q - q + - + q - q + q
q |
In[15]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[15]= | {Knot[9, 42]} |
In[16]:= | A2Invariant[Knot[9, 42]][q] |
Out[16]= | -10 -8 -6 -2 2 6 8 10
-1 + q + q + q - q - q + q + q + q |
In[17]:= | HOMFLYPT[Knot[9, 42]][a, z] |
Out[17]= | 2
2 2 2 z 2 2 4
-3 + -- + 2 a - 4 z + -- + a z - z
2 2
a a |
In[18]:= | Kauffman[Knot[9, 42]][a, z] |
Out[18]= | 2 3
2 2 2 z 2 6 z 2 2 6 z 3
-3 - -- - 2 a - --- - 2 a z + 12 z + ---- + 6 a z + ---- + 6 a z -
2 a 2 a
a a
4 5 6 7
4 5 z 2 4 5 z 5 6 z 2 6 z 7
10 z - ---- - 5 a z - ---- - 5 a z + 2 z + -- + a z + -- + a z
2 a 2 a
a a |
In[19]:= | {Vassiliev[2][Knot[9, 42]], Vassiliev[3][Knot[9, 42]]} |
Out[19]= | {-2, 0} |
In[20]:= | Kh[Knot[9, 42]][q, t] |
Out[20]= | 1 3 1 1 1 1 q 3 7 2
- + q + q + ----- + ----- + ----- + --- + - + q t + q t
q 7 4 3 3 3 2 q t t
q t q t q t |
In[21]:= | ColouredJones[Knot[9, 42], 2][q] |
Out[21]= | -10 -9 -8 2 -6 -5 2 -3 1 3 4
-1 + q - q - q + -- - q - q + -- - q + - + q - q + 2 q -
7 4 q
q q
5 6 7 8 9 10
q - q + 2 q - q - q + q |