In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 29, 2005, 15:27:48)... |
In[2]:= | PD[Knot[10, 109]] |
Out[2]= | PD[X[6, 2, 7, 1], X[10, 4, 11, 3], X[18, 11, 19, 12], X[16, 7, 17, 8],
X[8, 17, 9, 18], X[20, 15, 1, 16], X[12, 19, 13, 20],
X[14, 6, 15, 5], X[2, 10, 3, 9], X[4, 14, 5, 13]] |
In[3]:= | GaussCode[Knot[10, 109]] |
Out[3]= | GaussCode[1, -9, 2, -10, 8, -1, 4, -5, 9, -2, 3, -7, 10, -8, 6, -4, 5,
-3, 7, -6] |
In[4]:= | DTCode[Knot[10, 109]] |
Out[4]= | DTCode[6, 10, 14, 16, 2, 18, 4, 20, 8, 12] |
In[5]:= | br = BR[Knot[10, 109]] |
Out[5]= | BR[3, {-1, -1, 2, -1, 2, 2, -1, -1, 2, 2}] |
In[6]:= | {First[br], Crossings[br]} |
Out[6]= | {3, 10} |
In[7]:= | BraidIndex[Knot[10, 109]] |
Out[7]= | 3 |
In[8]:= | Show[DrawMorseLink[Knot[10, 109]]] |
| |
Out[8]= | -Graphics- |
In[9]:= | (#[Knot[10, 109]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex} |
Out[9]= | {NegativeAmphicheiral, 2, 4, 3, NotAvailable, 1} |
In[10]:= | alex = Alexander[Knot[10, 109]][t] |
Out[10]= | -4 4 10 17 2 3 4
21 + t - -- + -- - -- - 17 t + 10 t - 4 t + t
3 2 t
t t |
In[11]:= | Conway[Knot[10, 109]][z] |
Out[11]= | 2 4 6 8
1 + 3 z + 6 z + 4 z + z |
In[12]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[12]= | {Knot[10, 109]} |
In[13]:= | {KnotDet[Knot[10, 109]], KnotSignature[Knot[10, 109]]} |
Out[13]= | {85, 0} |
In[14]:= | Jones[Knot[10, 109]][q] |
Out[14]= | -5 3 7 11 13 2 3 4 5
15 - q + -- - -- + -- - -- - 13 q + 11 q - 7 q + 3 q - q
4 3 2 q
q q q |
In[15]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[15]= | {Knot[10, 81], Knot[10, 109]} |
In[16]:= | A2Invariant[Knot[10, 109]][q] |
Out[16]= | -14 -12 3 -8 -4 5 2 4 8 10
-1 - q + q - --- + q - q + -- + 5 q - q + q - 3 q +
10 2
q q
12 14
q - q |
In[17]:= | HOMFLYPT[Knot[10, 109]][a, z] |
Out[17]= | 2 4
3 2 2 6 z 2 2 4 4 z 2 4
7 - -- - 3 a + 15 z - ---- - 6 a z + 14 z - ---- - 4 a z +
2 2 2
a a a
6
6 z 2 6 8
6 z - -- - a z + z
2
a |
In[18]:= | Kauffman[Knot[10, 109]][a, z] |
Out[18]= | 2
3 2 z z 5 z 3 5 2 2 z
7 + -- + 3 a + -- - -- - --- - 5 a z - a z + a z - 18 z + ---- -
2 5 3 a 4
a a a a
2 3 3 3
7 z 2 2 4 2 2 z 4 z 13 z 3 3 3
---- - 7 a z + 2 a z - ---- + ---- + ----- + 13 a z + 4 a z -
2 5 3 a
a a a
4 4 5 5
5 3 4 5 z 6 z 2 4 4 4 z 8 z
2 a z + 22 z - ---- + ---- + 6 a z - 5 a z + -- - ---- -
4 2 5 3
a a a a
5 6 6
16 z 5 3 5 5 5 6 3 z 7 z 2 6
----- - 16 a z - 8 a z + a z - 20 z + ---- - ---- - 7 a z +
a 4 2
a a
7 7 8
4 6 5 z 6 z 7 3 7 8 5 z 2 8
3 a z + ---- + ---- + 6 a z + 5 a z + 10 z + ---- + 5 a z +
3 a 2
a a
9
2 z 9
---- + 2 a z
a |
In[19]:= | {Vassiliev[2][Knot[10, 109]], Vassiliev[3][Knot[10, 109]]} |
Out[19]= | {3, 0} |
In[20]:= | Kh[Knot[10, 109]][q, t] |
Out[20]= | 8 1 2 1 5 2 6 5
- + 8 q + ------ + ----- + ----- + ----- + ----- + ----- + ----- +
q 11 5 9 4 7 4 7 3 5 3 5 2 3 2
q t q t q t q t q t q t q t
7 6 3 3 2 5 2 5 3 7 3
---- + --- + 6 q t + 7 q t + 5 q t + 6 q t + 2 q t + 5 q t +
3 q t
q t
7 4 9 4 11 5
q t + 2 q t + q t |
In[21]:= | ColouredJones[Knot[10, 109], 2][q] |
Out[21]= | -15 3 2 8 20 6 40 60 7 105 98
195 + q - --- + --- + --- - --- + --- + -- - -- - -- + --- - -- -
14 13 12 11 10 9 8 7 6 5
q q q q q q q q q q
45 169 108 87 2 3 4 5
-- + --- - --- - -- - 87 q - 108 q + 169 q - 45 q - 98 q +
4 3 2 q
q q q
6 7 8 9 10 11 12 13
105 q - 7 q - 60 q + 40 q + 6 q - 20 q + 8 q + 2 q -
14 15
3 q + q |