In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 29, 2005, 15:27:48)... |
In[2]:= | PD[Knot[8, 3]] |
Out[2]= | PD[X[6, 2, 7, 1], X[14, 10, 15, 9], X[10, 5, 11, 6], X[12, 3, 13, 4],
X[4, 11, 5, 12], X[2, 13, 3, 14], X[16, 8, 1, 7], X[8, 16, 9, 15]] |
In[3]:= | GaussCode[Knot[8, 3]] |
Out[3]= | GaussCode[1, -6, 4, -5, 3, -1, 7, -8, 2, -3, 5, -4, 6, -2, 8, -7] |
In[4]:= | DTCode[Knot[8, 3]] |
Out[4]= | DTCode[6, 12, 10, 16, 14, 4, 2, 8] |
In[5]:= | br = BR[Knot[8, 3]] |
Out[5]= | BR[5, {-1, -1, -2, 1, 3, -2, 3, 4, -3, 4}] |
In[6]:= | {First[br], Crossings[br]} |
Out[6]= | {5, 10} |
In[7]:= | BraidIndex[Knot[8, 3]] |
Out[7]= | 5 |
In[8]:= | Show[DrawMorseLink[Knot[8, 3]]] |
| |
Out[8]= | -Graphics- |
In[9]:= | (#[Knot[8, 3]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex} |
Out[9]= | {FullyAmphicheiral, 2, 1, 2, {4, 6}, 1} |
In[10]:= | alex = Alexander[Knot[8, 3]][t] |
Out[10]= | 4
9 - - - 4 t
t |
In[11]:= | Conway[Knot[8, 3]][z] |
Out[11]= | 2
1 - 4 z |
In[12]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[12]= | {Knot[8, 3], Knot[10, 1]} |
In[13]:= | {KnotDet[Knot[8, 3]], KnotSignature[Knot[8, 3]]} |
Out[13]= | {17, 0} |
In[14]:= | Jones[Knot[8, 3]][q] |
Out[14]= | -4 -3 2 3 2 3 4
3 + q - q + -- - - - 3 q + 2 q - q + q
2 q
q |
In[15]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[15]= | {Knot[8, 3]} |
In[16]:= | A2Invariant[Knot[8, 3]][q] |
Out[16]= | -14 -12 -8 -4 4 8 12 14
-1 + q + q + q - q - q + q + q + q |
In[17]:= | HOMFLYPT[Knot[8, 3]][a, z] |
Out[17]= | 2
-4 4 2 z 2 2
-1 + a + a - 2 z - -- - a z
2
a |
In[18]:= | Kauffman[Knot[8, 3]][a, z] |
Out[18]= | 2 2
-4 4 4 z 2 3 z z 2 2 4 2
-1 + a + a - --- - 4 a z + 8 z - ---- + -- + a z - 3 a z -
a 4 2
a a
3 3 4 4
2 z 8 z 3 3 3 4 z 2 z 2 4 4 4
---- + ---- + 8 a z - 2 a z - 6 z + -- - ---- - 2 a z + a z +
3 a 4 2
a a a
5 5 6 7
z 4 z 5 3 5 6 z 2 6 z 7
-- - ---- - 4 a z + a z + 2 z + -- + a z + -- + a z
3 a 2 a
a a |
In[19]:= | {Vassiliev[2][Knot[8, 3]], Vassiliev[3][Knot[8, 3]]} |
Out[19]= | {-4, 0} |
In[20]:= | Kh[Knot[8, 3]][q, t] |
Out[20]= | 2 1 1 2 1 2 3 5 2
- + 2 q + ----- + ----- + ----- + ---- + --- + 2 q t + q t + 2 q t +
q 9 4 5 3 5 2 3 q t
q t q t q t q t
5 3 9 4
q t + q t |
In[21]:= | ColouredJones[Knot[8, 3], 2][q] |
Out[21]= | -12 -11 2 3 -7 5 4 3 9 5 5
11 + q - q + -- - -- - q + -- - -- - -- + -- - -- - - - 5 q -
9 8 6 5 4 3 2 q
q q q q q q q
2 3 4 5 6 7 8 9 11 12
5 q + 9 q - 3 q - 4 q + 5 q - q - 3 q + 2 q - q + q |