In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 29, 2005, 15:27:48)... |
In[2]:= | PD[Knot[10, 25]] |
Out[2]= | PD[X[1, 4, 2, 5], X[5, 14, 6, 15], X[3, 13, 4, 12], X[13, 3, 14, 2],
X[11, 20, 12, 1], X[19, 6, 20, 7], X[9, 18, 10, 19], X[7, 16, 8, 17],
X[17, 8, 18, 9], X[15, 10, 16, 11]] |
In[3]:= | GaussCode[Knot[10, 25]] |
Out[3]= | GaussCode[-1, 4, -3, 1, -2, 6, -8, 9, -7, 10, -5, 3, -4, 2, -10, 8, -9,
7, -6, 5] |
In[4]:= | DTCode[Knot[10, 25]] |
Out[4]= | DTCode[4, 12, 14, 16, 18, 20, 2, 10, 8, 6] |
In[5]:= | br = BR[Knot[10, 25]] |
Out[5]= | BR[4, {-1, -1, -1, -1, -2, 1, -2, -2, 3, -2, 3}] |
In[6]:= | {First[br], Crossings[br]} |
Out[6]= | {4, 11} |
In[7]:= | BraidIndex[Knot[10, 25]] |
Out[7]= | 4 |
In[8]:= | Show[DrawMorseLink[Knot[10, 25]]] |
| |
Out[8]= | -Graphics- |
In[9]:= | (#[Knot[10, 25]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex} |
Out[9]= | {Reversible, 2, 3, 2, NotAvailable, 1} |
In[10]:= | alex = Alexander[Knot[10, 25]][t] |
Out[10]= | 2 8 14 2 3
17 - -- + -- - -- - 14 t + 8 t - 2 t
3 2 t
t t |
In[11]:= | Conway[Knot[10, 25]][z] |
Out[11]= | 4 6
1 - 4 z - 2 z |
In[12]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[12]= | {Knot[10, 25], Knot[10, 56], Knot[11, Alternating, 140]} |
In[13]:= | {KnotDet[Knot[10, 25]], KnotSignature[Knot[10, 25]]} |
Out[13]= | {65, -4} |
In[14]:= | Jones[Knot[10, 25]][q] |
Out[14]= | -10 3 6 9 10 11 10 7 5 2
1 + q - -- + -- - -- + -- - -- + -- - -- + -- - -
9 8 7 6 5 4 3 2 q
q q q q q q q q |
In[15]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[15]= | {Knot[10, 25], Knot[10, 56]} |
In[16]:= | A2Invariant[Knot[10, 25]][q] |
Out[16]= | -30 -28 -26 -24 2 -20 3 -12 3 -8
1 + q - q + q + q - --- + q - --- - q + --- - q +
22 18 10
q q q
2 -4
-- + q
6
q |
In[17]:= | HOMFLYPT[Knot[10, 25]][a, z] |
Out[17]= | 2 6 8 2 2 4 2 6 2 8 2 2 4
2 a - 2 a + a + 3 a z - 2 a z - 3 a z + 2 a z + a z -
4 4 6 4 8 4 4 6 6 6
3 a z - 3 a z + a z - a z - a z |
In[18]:= | Kauffman[Knot[10, 25]][a, z] |
Out[18]= | 2 6 8 3 7 11 2 2 4 2
-2 a + 2 a + a + a z - 2 a z + a z + 5 a z + 4 a z -
6 2 8 2 10 2 12 2 3 3 5 3 7 3
4 a z + a z + 3 a z - a z + 4 a z + 2 a z + 3 a z +
9 3 11 3 2 4 4 4 6 4 8 4
2 a z - 3 a z - 4 a z - 3 a z + 3 a z - 5 a z -
10 4 12 4 3 5 5 5 7 5 9 5
6 a z + a z - 6 a z - 7 a z - 9 a z - 5 a z +
11 5 2 6 4 6 6 6 8 6 10 6 3 7
3 a z + a z - 3 a z - 8 a z + a z + 5 a z + 2 a z +
5 7 7 7 9 7 4 8 6 8 8 8 5 9
2 a z + 5 a z + 5 a z + 2 a z + 5 a z + 3 a z + a z +
7 9
a z |
In[19]:= | {Vassiliev[2][Knot[10, 25]], Vassiliev[3][Knot[10, 25]]} |
Out[19]= | {0, 2} |
In[20]:= | Kh[Knot[10, 25]][q, t] |
Out[20]= | 2 4 1 2 1 4 2 5
-- + -- + ------ + ------ + ------ + ------ + ------ + ------ +
5 3 21 8 19 7 17 7 17 6 15 6 15 5
q q q t q t q t q t q t q t
4 5 5 6 5 4 6 3
------ + ------ + ------ + ------ + ----- + ----- + ----- + ---- +
13 5 13 4 11 4 11 3 9 3 9 2 7 2 7
q t q t q t q t q t q t q t q t
4 t t 2
---- + -- + - + q t
5 3 q
q t q |
In[21]:= | ColouredJones[Knot[10, 25], 2][q] |
Out[21]= | -28 3 2 7 17 7 26 46 11 58 78
q - --- + --- + --- - --- + --- + --- - --- + --- + --- - --- +
27 26 25 24 23 22 21 20 19 18
q q q q q q q q q q
8 86 93 4 97 82 18 85 54 24 56 23
--- + --- - --- - --- + --- - --- - --- + --- - -- - -- + -- - -- -
17 16 15 14 13 12 11 10 9 8 7 6
q q q q q q q q q q q q
19 26 5 9 7 2
-- + -- - -- - -- + - - 2 q + q
5 4 3 2 q
q q q q |