In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 17, 2005, 14:44:34)... |
In[2]:= | Crossings[Link[9, Alternating, 3]] |
Out[2]= | 9 |
In[3]:= | PD[Link[9, Alternating, 3]] |
Out[3]= | PD[X[6, 1, 7, 2], X[16, 7, 17, 8], X[4, 17, 1, 18], X[12, 6, 13, 5],
X[8, 4, 9, 3], X[14, 10, 15, 9], X[10, 14, 11, 13], X[18, 12, 5, 11],
X[2, 16, 3, 15]] |
In[4]:= | GaussCode[Link[9, Alternating, 3]] |
Out[4]= | GaussCode[{1, -9, 5, -3}, {4, -1, 2, -5, 6, -7, 8, -4, 7, -6, 9, -2, 3,
-8}] |
In[5]:= | BR[Link[9, Alternating, 3]] |
Out[5]= | BR[Link[9, Alternating, 3]] |
In[6]:= | alex = Alexander[Link[9, Alternating, 3]][t] |
Out[6]= | ComplexInfinity |
In[7]:= | Conway[Link[9, Alternating, 3]][z] |
Out[7]= | ComplexInfinity |
In[8]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[8]= | {} |
In[9]:= | {KnotDet[Link[9, Alternating, 3]], KnotSignature[Link[9, Alternating, 3]]} |
Out[9]= | {Infinity, 1} |
In[10]:= | J=Jones[Link[9, Alternating, 3]][q] |
Out[10]= | -(5/2) 3 5 3/2 5/2 7/2
q - ---- + ------- - 9 Sqrt[q] + 9 q - 10 q + 8 q -
3/2 Sqrt[q]
q
9/2 11/2 13/2
6 q + 4 q - q |
In[11]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[11]= | {} |
In[12]:= | A2Invariant[Link[9, Alternating, 3]][q] |
Out[12]= | -8 -6 -2 2 4 6 8 10 12 16
4 - q + q - q + q + 4 q + 3 q + q + 2 q - 3 q - q -
18 20
2 q + q |
In[13]:= | Kauffman[Link[9, Alternating, 3]][a, z] |
Out[13]= | 2 2
-6 3 3 1 3 2 3 z 5 z 2 z 3 z
-a - -- - -- + ---- + ---- + --- - --- - --- - 2 a z - ---- - ---- -
4 2 5 3 a z 3 a 6 4
a a a z a z a a a
2 3 3 3 3 4
2 z 2 2 z 4 z 6 z 3 z 3 4 8 z
---- + a z + -- - ---- - ---- + ---- + 4 a z + 3 z + ---- +
2 7 5 3 a 6
a a a a a
4 4 5 5 5 5
13 z 9 z 2 4 z 10 z 16 z 2 z 5 6
----- + ---- - a z - -- + ----- + ----- + ---- - 3 a z - 4 z -
4 2 7 5 3 a
a a a a a
6 6 6 7 7 7 8 8
4 z 4 z 4 z 5 z 9 z 4 z 2 z 2 z
---- - ---- - ---- - ---- - ---- - ---- - ---- - ----
6 4 2 5 3 a 4 2
a a a a a a a |
In[14]:= | {Vassiliev[2][Link[9, Alternating, 3]], Vassiliev[3][Link[9, Alternating, 3]]} |
Out[14]= | 3
{0, -(-)}
2 |
In[15]:= | Kh[Link[9, Alternating, 3]][q, t] |
Out[15]= | 2 1 2 1 2 3 2 4
6 + 5 q + ----- + ----- + ----- + - + ---- + 5 q t + 4 q t +
6 3 4 2 2 2 t 2
q t q t q t q t
4 2 6 2 6 3 8 3 8 4 10 4 10 5
5 q t + 5 q t + 3 q t + 5 q t + 3 q t + 3 q t + q t +
12 5 14 6
3 q t + q t |