In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 17, 2005, 14:44:34)... |
In[2]:= | Crossings[Link[8, Alternating, 5]] |
Out[2]= | 8 |
In[3]:= | PD[Link[8, Alternating, 5]] |
Out[3]= | PD[X[6, 1, 7, 2], X[12, 3, 13, 4], X[14, 8, 15, 7], X[16, 10, 5, 9],
X[8, 16, 9, 15], X[10, 14, 11, 13], X[2, 5, 3, 6], X[4, 11, 1, 12]] |
In[4]:= | GaussCode[Link[8, Alternating, 5]] |
Out[4]= | GaussCode[{1, -7, 2, -8}, {7, -1, 3, -5, 4, -6, 8, -2, 6, -3, 5, -4}] |
In[5]:= | BR[Link[8, Alternating, 5]] |
Out[5]= | BR[Link[8, Alternating, 5]] |
In[6]:= | alex = Alexander[Link[8, Alternating, 5]][t] |
Out[6]= | ComplexInfinity |
In[7]:= | Conway[Link[8, Alternating, 5]][z] |
Out[7]= | ComplexInfinity |
In[8]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[8]= | {} |
In[9]:= | {KnotDet[Link[8, Alternating, 5]], KnotSignature[Link[8, Alternating, 5]]} |
Out[9]= | {Infinity, 1} |
In[10]:= | J=Jones[Link[8, Alternating, 5]][q] |
Out[10]= | -(7/2) -(5/2) 4 4 3/2 5/2
-q + q - ---- + ------- - 5 Sqrt[q] + 5 q - 4 q +
3/2 Sqrt[q]
q
7/2 9/2
3 q - q |
In[11]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[11]= | {} |
In[12]:= | A2Invariant[Link[8, Alternating, 5]][q] |
Out[12]= | -12 2 2 4 2 -2 2 6 12 14
1 + q + --- + -- + -- + -- + q - 2 q - 2 q - q + q
10 8 6 4
q q q q |
In[13]:= | Kauffman[Link[8, Alternating, 5]][a, z] |
Out[13]= | 3
-2 2 1 3 a 2 a z 2 z 3 2
-3 - a - 3 a + --- + --- + ---- - -- - --- - 6 a z - 5 a z + 2 z +
a z z z 3 a
a
2 2 3 3 3
2 z z 2 2 z 4 z 6 z 3 3 3 4
---- + -- + 3 a z - -- + ---- + ---- + 5 a z + 4 a z + 6 z -
4 2 5 3 a
a a a a
4 4 5 5 6
3 z 2 z 2 4 4 z 3 z 3 5 6 3 z 2 6
---- + ---- + a z - ---- - ---- - a z - 4 z - ---- - a z -
4 2 3 a 2
a a a a
7
z 7
-- - a z
a |
In[14]:= | {Vassiliev[2][Link[8, Alternating, 5]], Vassiliev[3][Link[8, Alternating, 5]]} |
Out[14]= | 17
{0, -(--)}
24 |
In[15]:= | Kh[Link[8, Alternating, 5]][q, t] |
Out[15]= | 2 1 1 1 3 1 3 1 2
4 + 2 q + ----- + ----- + ----- + ----- + ----- + - + ---- + 2 q t +
8 4 6 4 6 3 4 2 2 2 t 2
q t q t q t q t q t q t
4 4 2 6 2 6 3 8 3 10 4
3 q t + 2 q t + 2 q t + q t + 2 q t + q t |