L8a21
From Knot Atlas
Jump to navigationJump to search
|
|
Visit L8a21's page at Knotilus!
Visit L8a21's page at the original Knot Atlas! | |
L8a21 is a closed four-link chain. It is in the Rolfsen table of links. |
Knot presentations
Planar diagram presentation | X6172 X2536 X16,11,13,12 X10,3,11,4 X4,9,1,10 X14,7,15,8 X8,13,5,14 X12,15,9,16 |
Gauss code | {1, -2, 4, -5}, {2, -1, 6, -7}, {5, -4, 3, -8}, {7, -6, 8, -3} |
Polynomial invariants
Multivariable Alexander Polynomial (in , , , ...) | (db) |
Jones polynomial | (db) |
Signature | -3 (db) |
HOMFLY-PT polynomial | (db) |
Kauffman polynomial | (db) |
Vassiliev invariants
V2 and V3: | (0, ) |
V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where -3 is the signature of L8a21. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session.
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 17, 2005, 14:44:34)... | |
In[2]:= | Crossings[Link[8, Alternating, 21]] |
Out[2]= | 8 |
In[3]:= | PD[Link[8, Alternating, 21]] |
Out[3]= | PD[X[6, 1, 7, 2], X[2, 5, 3, 6], X[16, 11, 13, 12], X[10, 3, 11, 4], X[4, 9, 1, 10], X[14, 7, 15, 8], X[8, 13, 5, 14], X[12, 15, 9, 16]] |
In[4]:= | GaussCode[Link[8, Alternating, 21]] |
Out[4]= | GaussCode[{1, -2, 4, -5}, {2, -1, 6, -7}, {5, -4, 3, -8}, {7, -6, 8, -3}] |
In[5]:= | BR[Link[8, Alternating, 21]] |
Out[5]= | BR[Link[8, Alternating, 21]] |
In[6]:= | alex = Alexander[Link[8, Alternating, 21]][t] |
Out[6]= | ComplexInfinity |
In[7]:= | Conway[Link[8, Alternating, 21]][z] |
Out[7]= | ComplexInfinity |
In[8]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[8]= | {} |
In[9]:= | {KnotDet[Link[8, Alternating, 21]], KnotSignature[Link[8, Alternating, 21]]} |
Out[9]= | {Infinity, -3} |
In[10]:= | J=Jones[Link[8, Alternating, 21]][q] |
Out[10]= | -(19/2) -(17/2) 5 4 7 4 6 3 |
In[11]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[11]= | {} |
In[12]:= | A2Invariant[Link[8, Alternating, 21]][q] |
Out[12]= | -32 4 6 8 13 12 11 10 6 6 2 |
In[13]:= | Kauffman[Link[8, Alternating, 21]][a, z] |
Out[13]= | 5 7 9 11 6 8 106 8 10 a 3 a 3 a a 3 a 6 a 3 a |
In[14]:= | {Vassiliev[2][Link[8, Alternating, 21]], Vassiliev[3][Link[8, Alternating, 21]]} |
Out[14]= | 185 |
In[15]:= | Kh[Link[8, Alternating, 21]][q, t] |
Out[15]= | -4 -2 1 1 1 4 1 4 |