In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 17, 2005, 14:44:34)... |
In[2]:= | Crossings[Link[8, Alternating, 9]] |
Out[2]= | 8 |
In[3]:= | PD[Link[8, Alternating, 9]] |
Out[3]= | PD[X[8, 1, 9, 2], X[10, 4, 11, 3], X[16, 10, 7, 9], X[2, 7, 3, 8],
X[4, 16, 5, 15], X[12, 5, 13, 6], X[14, 11, 15, 12], X[6, 13, 1, 14]] |
In[4]:= | GaussCode[Link[8, Alternating, 9]] |
Out[4]= | GaussCode[{1, -4, 2, -5, 6, -8}, {4, -1, 3, -2, 7, -6, 8, -7, 5, -3}] |
In[5]:= | BR[Link[8, Alternating, 9]] |
Out[5]= | BR[Link[8, Alternating, 9]] |
In[6]:= | alex = Alexander[Link[8, Alternating, 9]][t] |
Out[6]= | ComplexInfinity |
In[7]:= | Conway[Link[8, Alternating, 9]][z] |
Out[7]= | ComplexInfinity |
In[8]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[8]= | {} |
In[9]:= | {KnotDet[Link[8, Alternating, 9]], KnotSignature[Link[8, Alternating, 9]]} |
Out[9]= | {Infinity, -1} |
In[10]:= | J=Jones[Link[8, Alternating, 9]][q] |
Out[10]= | -(11/2) 3 4 6 6 6 3/2
q - ---- + ---- - ---- + ---- - ------- + 4 Sqrt[q] - 3 q +
9/2 7/2 5/2 3/2 Sqrt[q]
q q q q
5/2
q |
In[11]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[11]= | {} |
In[12]:= | A2Invariant[Link[8, Alternating, 9]][q] |
Out[12]= | -18 2 2 -8 2 6 8
3 - q + --- + --- + q + -- + q - q
14 10 4
q q q |
In[13]:= | Kauffman[Link[8, Alternating, 9]][a, z] |
Out[13]= | 3 2
2 a a 2 z 3 5 z 2 2 6 2
-a + - + -- - --- - 7 a z - 7 a z - 2 a z + -- - 2 a z + a z +
z z a 2
a
3 4
5 z 3 3 3 5 3 4 z 2 4 4 4
---- + 13 a z + 13 a z + 5 a z + 3 z - -- + 8 a z + 3 a z -
a 2
a
5
6 4 3 z 5 3 5 5 5 6 2 6
a z - ---- - 6 a z - 6 a z - 3 a z - 3 z - 6 a z -
a
4 6 7 3 7
3 a z - a z - a z |
In[14]:= | {Vassiliev[2][Link[8, Alternating, 9]], Vassiliev[3][Link[8, Alternating, 9]]} |
Out[14]= | 17
{0, -(--)}
48 |
In[15]:= | Kh[Link[8, Alternating, 9]][q, t] |
Out[15]= | 3 1 2 1 2 2 4 3
4 + -- + ------ + ------ + ----- + ----- + ----- + ----- + ----- +
2 12 5 10 4 8 4 8 3 6 3 6 2 4 2
q q t q t q t q t q t q t q t
3 3 2 2 2 4 2 6 3
---- + ---- + 2 t + 2 q t + q t + 2 q t + q t
4 2
q t q t |