In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 17, 2005, 14:44:34)... |
In[2]:= | Crossings[Link[7, NonAlternating, 2]] |
Out[2]= | 7 |
In[3]:= | PD[Link[7, NonAlternating, 2]] |
Out[3]= | PD[X[6, 1, 7, 2], X[12, 7, 13, 8], X[13, 1, 14, 4], X[5, 10, 6, 11],
X[3, 8, 4, 9], X[9, 14, 10, 5], X[2, 12, 3, 11]] |
In[4]:= | GaussCode[Link[7, NonAlternating, 2]] |
Out[4]= | GaussCode[{1, -7, -5, 3}, {-4, -1, 2, 5, -6, 4, 7, -2, -3, 6}] |
In[5]:= | BR[Link[7, NonAlternating, 2]] |
Out[5]= | BR[Link[7, NonAlternating, 2]] |
In[6]:= | alex = Alexander[Link[7, NonAlternating, 2]][t] |
Out[6]= | ComplexInfinity |
In[7]:= | Conway[Link[7, NonAlternating, 2]][z] |
Out[7]= | ComplexInfinity |
In[8]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[8]= | {} |
In[9]:= | {KnotDet[Link[7, NonAlternating, 2]], KnotSignature[Link[7, NonAlternating, 2]]} |
Out[9]= | {Infinity, -1} |
In[10]:= | J=Jones[Link[7, NonAlternating, 2]][q] |
Out[10]= | -(11/2) -(9/2) -(7/2) 2 -(3/2) 2
q - q + q - ---- + q - -------
5/2 Sqrt[q]
q |
In[11]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[11]= | {} |
In[12]:= | A2Invariant[Link[7, NonAlternating, 2]][q] |
Out[12]= | -18 -16 -14 -12 -10 2 3 3 2
2 - q - q - q - q + q + -- + -- + -- + --
8 6 4 2
q q q q |
In[13]:= | Kauffman[Link[7, NonAlternating, 2]][a, z] |
Out[13]= | 3 5
2 4 6 2 a 3 a a 3 5
-3 a - 3 a - a + --- + ---- + -- - 3 a z - 5 a z - 2 a z +
z z z
2 2 4 2 6 2 3 3 5 3 2 4 4 4
2 a z + 5 a z + 3 a z + 3 a z + 3 a z - a z - 2 a z -
6 4 3 5 5 5
a z - a z - a z |
In[14]:= | {Vassiliev[2][Link[7, NonAlternating, 2]], Vassiliev[3][Link[7, NonAlternating, 2]]} |
Out[14]= | 5
{0, -}
2 |
In[15]:= | Kh[Link[7, NonAlternating, 2]][q, t] |
Out[15]= | 2 1 1 1 1 1 1
2 + -- + ------ + ----- + ----- + ----- + ----- + ----
2 12 5 8 4 8 3 6 2 4 2 2
q q t q t q t q t q t q t |