L8n3

From Knot Atlas
Revision as of 20:13, 28 August 2005 by ScottTestRobot (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigationJump to search

L8n2.gif

L8n2

L8n4.gif

L8n4

L8n3.gif Visit L8n3's page at Knotilus!

Visit L8n3's page at the original Knot Atlas!

L8n3 is [math]\displaystyle{ 8^3_{7} }[/math] in the Rolfsen table of links.


L8n3 Further Notes and Views

Knot presentations

Planar diagram presentation X6172 X5,12,6,13 X3849 X13,2,14,3 X14,7,15,8 X9,16,10,11 X11,10,12,5 X4,15,1,16
Gauss code {1, 4, -3, -8}, {-2, -1, 5, 3, -6, 7}, {-7, 2, -4, -5, 8, 6}

Polynomial invariants

Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) [math]\displaystyle{ \frac{u v^2 w^2-1}{\sqrt{u} v w} }[/math] (db)
Jones polynomial [math]\displaystyle{ q^{-3} + q^{-5} + q^{-7} + q^{-9} }[/math] (db)
Signature -6 (db)
HOMFLY-PT polynomial [math]\displaystyle{ a^{10} z^{-2} +a^{10}-z^4 a^8-5 z^2 a^8-2 a^8 z^{-2} -6 a^8+z^6 a^6+6 z^4 a^6+10 z^2 a^6+a^6 z^{-2} +5 a^6 }[/math] (db)
Kauffman polynomial [math]\displaystyle{ a^{12}+a^{10} z^2+a^{10} z^{-2} -3 a^{10}+a^9 z^5-5 a^9 z^3+6 a^9 z-2 a^9 z^{-1} +a^8 z^6-6 a^8 z^4+11 a^8 z^2+2 a^8 z^{-2} -8 a^8+a^7 z^5-5 a^7 z^3+6 a^7 z-2 a^7 z^{-1} +a^6 z^6-6 a^6 z^4+10 a^6 z^2+a^6 z^{-2} -5 a^6 }[/math] (db)

Vassiliev invariants

V2 and V3: (0, [math]\displaystyle{ \frac{100}{3} }[/math])
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9
Data:L8n3/V 2,1 Data:L8n3/V 3,1 Data:L8n3/V 4,1 Data:L8n3/V 4,2 Data:L8n3/V 4,3 Data:L8n3/V 5,1 Data:L8n3/V 5,2 Data:L8n3/V 5,3 Data:L8n3/V 5,4 Data:L8n3/V 6,1 Data:L8n3/V 6,2 Data:L8n3/V 6,3 Data:L8n3/V 6,4 Data:L8n3/V 6,5 Data:L8n3/V 6,6 Data:L8n3/V 6,7 Data:L8n3/V 6,8 Data:L8n3/V 6,9

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). The squares with yellow highlighting are those on the "critical diagonals", where [math]\displaystyle{ j-2r=s+1 }[/math] or [math]\displaystyle{ j-2r=s-1 }[/math], where [math]\displaystyle{ s= }[/math]-6 is the signature of L8n3. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-6-5-4-3-2-10χ
-5      11
-7      11
-9    1  1
-11  1    1
-13  21   1
-151      1
-1721     1
-191      1
Integral Khovanov Homology

(db, data source)

  
[math]\displaystyle{ \dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} }[/math] [math]\displaystyle{ i=-7 }[/math] [math]\displaystyle{ i=-5 }[/math] [math]\displaystyle{ i=-3 }[/math]
[math]\displaystyle{ r=-6 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-5 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-4 }[/math] [math]\displaystyle{ {\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-3 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-2 }[/math] [math]\displaystyle{ {\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-1 }[/math]
[math]\displaystyle{ r=0 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

[math]\displaystyle{ \textrm{Include}(\textrm{ColouredJonesM.mhtml}) }[/math]

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 17, 2005, 14:44:34)...
In[2]:=
Crossings[Link[8, NonAlternating, 3]]
Out[2]=  
8
In[3]:=
PD[Link[8, NonAlternating, 3]]
Out[3]=  
PD[X[6, 1, 7, 2], X[5, 12, 6, 13], X[3, 8, 4, 9], X[13, 2, 14, 3], 
  X[14, 7, 15, 8], X[9, 16, 10, 11], X[11, 10, 12, 5], X[4, 15, 1, 16]]
In[4]:=
GaussCode[Link[8, NonAlternating, 3]]
Out[4]=  
GaussCode[{1, 4, -3, -8}, {-2, -1, 5, 3, -6, 7}, {-7, 2, -4, -5, 8, 6}]
In[5]:=
BR[Link[8, NonAlternating, 3]]
Out[5]=  
BR[Link[8, NonAlternating, 3]]
In[6]:=
alex = Alexander[Link[8, NonAlternating, 3]][t]
Out[6]=  
ComplexInfinity
In[7]:=
Conway[Link[8, NonAlternating, 3]][z]
Out[7]=  
ComplexInfinity
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=  
{}
In[9]:=
{KnotDet[Link[8, NonAlternating, 3]], KnotSignature[Link[8, NonAlternating, 3]]}
Out[9]=  
{Infinity, -6}
In[10]:=
J=Jones[Link[8, NonAlternating, 3]][q]
Out[10]=  
 -9    -7    -5    -3
q   + q   + q   + q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=  
{}
In[12]:=
A2Invariant[Link[8, NonAlternating, 3]][q]
Out[12]=  
 -32    -30    2     3     4     4     3     3     2     2     -12

q + q + --- + --- + --- + --- + --- + --- + --- + --- + q +

              28    26    24    22    20    18    16    14
             q     q     q     q     q     q     q     q

  -10
q
In[13]:=
Kauffman[Link[8, NonAlternating, 3]][a, z]
Out[13]=  
                              6      8    10      7      9
   6      8      10    12   a    2 a    a     2 a    2 a       7

-5 a - 8 a - 3 a + a + -- + ---- + --- - ---- - ---- + 6 a z +

                             2     2     2     z      z
                            z     z     z

    9         6  2       8  2    10  2      7  3      9  3      6  4
 6 a  z + 10 a  z  + 11 a  z  + a   z  - 5 a  z  - 5 a  z  - 6 a  z  - 

    8  4    7  5    9  5    6  6    8  6
6 a z + a z + a z + a z + a z
In[14]:=
{Vassiliev[2][Link[8, NonAlternating, 3]], Vassiliev[3][Link[8, NonAlternating, 3]]}
Out[14]=  
    100

{0, ---}

3
In[15]:=
Kh[Link[8, NonAlternating, 3]][q, t]
Out[15]=  
 -7    -5     1        2        1        1        2        1

q + q + ------ + ------ + ------ + ------ + ------ + ------ +

            19  6    17  6    15  6    17  5    13  4    11  4
           q   t    q   t    q   t    q   t    q   t    q   t

   1        1
 ------ + -----
  13  3    9  2
q t q t