L8a3
|
|
|
|
Visit L8a3's page at Knotilus!
Visit L8a3's page at the original Knot Atlas! |
| L8a3 is Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 8^2_{9}} in the Rolfsen table of links. |
Knot presentations
| Planar diagram presentation | X6172 X10,3,11,4 X14,8,15,7 X16,11,5,12 X12,15,13,16 X8,14,9,13 X2536 X4,9,1,10 |
| Gauss code | {1, -7, 2, -8}, {7, -1, 3, -6, 8, -2, 4, -5, 6, -3, 5, -4} |
Polynomial invariants
| Multivariable Alexander Polynomial (in Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle w} , ...) | (db) |
| Jones polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -\frac{4}{q^{9/2}}+\frac{4}{q^{7/2}}-\frac{5}{q^{5/2}}-q^{3/2}+\frac{5}{q^{3/2}}-\frac{1}{q^{13/2}}+\frac{2}{q^{11/2}}+2 \sqrt{q}-\frac{4}{\sqrt{q}}} (db) |
| Signature | -1 (db) |
| HOMFLY-PT polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a^7 z^{-1} -3 z a^5-2 a^5 z^{-1} +2 z^3 a^3+3 z a^3+2 a^3 z^{-1} +z^3 a-z a-a z^{-1} -z a^{-1} } (db) |
| Kauffman polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -z^5 a^7+3 z^3 a^7-3 z a^7+a^7 z^{-1} -2 z^6 a^6+5 z^4 a^6-2 z^2 a^6-z^7 a^5-2 z^5 a^5+11 z^3 a^5-8 z a^5+2 a^5 z^{-1} -5 z^6 a^4+11 z^4 a^4-6 z^2 a^4+a^4-z^7 a^3-4 z^5 a^3+12 z^3 a^3-9 z a^3+2 a^3 z^{-1} -3 z^6 a^2+4 z^4 a^2-3 z^2 a^2-3 z^5 a+3 z^3 a-3 z a+a z^{-1} -2 z^4+z^2-z^3 a^{-1} +z a^{-1} } (db) |
Vassiliev invariants
| V2 and V3: | (0, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -\frac{125}{24}} ) |
| V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
| The coefficients of the monomials Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^rq^j} are shown, along with their alternating sums Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \chi} (fixed Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j} , alternation over Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r} ). The squares with yellow highlighting are those on the "critical diagonals", where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j-2r=s+1} or Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j-2r=s-1} , where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s=} -1 is the signature of L8a3. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \textrm{Include}(\textrm{ColouredJonesM.mhtml})}
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 17, 2005, 14:44:34)... | |
In[2]:= | Crossings[Link[8, Alternating, 3]] |
Out[2]= | 8 |
In[3]:= | PD[Link[8, Alternating, 3]] |
Out[3]= | PD[X[6, 1, 7, 2], X[10, 3, 11, 4], X[14, 8, 15, 7], X[16, 11, 5, 12], X[12, 15, 13, 16], X[8, 14, 9, 13], X[2, 5, 3, 6], X[4, 9, 1, 10]] |
In[4]:= | GaussCode[Link[8, Alternating, 3]] |
Out[4]= | GaussCode[{1, -7, 2, -8}, {7, -1, 3, -6, 8, -2, 4, -5, 6, -3, 5, -4}] |
In[5]:= | BR[Link[8, Alternating, 3]] |
Out[5]= | BR[Link[8, Alternating, 3]] |
In[6]:= | alex = Alexander[Link[8, Alternating, 3]][t] |
Out[6]= | ComplexInfinity |
In[7]:= | Conway[Link[8, Alternating, 3]][z] |
Out[7]= | ComplexInfinity |
In[8]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[8]= | {} |
In[9]:= | {KnotDet[Link[8, Alternating, 3]], KnotSignature[Link[8, Alternating, 3]]} |
Out[9]= | {Infinity, -1} |
In[10]:= | J=Jones[Link[8, Alternating, 3]][q] |
Out[10]= | -(13/2) 2 4 4 5 5 4 |
In[11]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[11]= | {} |
In[12]:= | A2Invariant[Link[8, Alternating, 3]][q] |
Out[12]= | -22 2 -16 -14 -12 -10 -6 -4 2 6 |
In[13]:= | Kauffman[Link[8, Alternating, 3]][a, z] |
Out[13]= | 3 5 74 a 2 a 2 a a z 3 5 7 2 |
In[14]:= | {Vassiliev[2][Link[8, Alternating, 3]], Vassiliev[3][Link[8, Alternating, 3]]} |
Out[14]= | 125 |
In[15]:= | Kh[Link[8, Alternating, 3]][q, t] |
Out[15]= | 2 1 1 1 3 2 2 2 |


