In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 17, 2005, 14:44:34)... |
In[2]:= | Crossings[Link[8, Alternating, 3]] |
Out[2]= | 8 |
In[3]:= | PD[Link[8, Alternating, 3]] |
Out[3]= | PD[X[6, 1, 7, 2], X[10, 3, 11, 4], X[14, 8, 15, 7], X[16, 11, 5, 12],
X[12, 15, 13, 16], X[8, 14, 9, 13], X[2, 5, 3, 6], X[4, 9, 1, 10]] |
In[4]:= | GaussCode[Link[8, Alternating, 3]] |
Out[4]= | GaussCode[{1, -7, 2, -8}, {7, -1, 3, -6, 8, -2, 4, -5, 6, -3, 5, -4}] |
In[5]:= | BR[Link[8, Alternating, 3]] |
Out[5]= | BR[Link[8, Alternating, 3]] |
In[6]:= | alex = Alexander[Link[8, Alternating, 3]][t] |
Out[6]= | ComplexInfinity |
In[7]:= | Conway[Link[8, Alternating, 3]][z] |
Out[7]= | ComplexInfinity |
In[8]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[8]= | {} |
In[9]:= | {KnotDet[Link[8, Alternating, 3]], KnotSignature[Link[8, Alternating, 3]]} |
Out[9]= | {Infinity, -1} |
In[10]:= | J=Jones[Link[8, Alternating, 3]][q] |
Out[10]= | -(13/2) 2 4 4 5 5 4
-q + ----- - ---- + ---- - ---- + ---- - ------- + 2 Sqrt[q] -
11/2 9/2 7/2 5/2 3/2 Sqrt[q]
q q q q q
3/2
q |
In[11]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[11]= | {} |
In[12]:= | A2Invariant[Link[8, Alternating, 3]][q] |
Out[12]= | -22 2 -16 -14 -12 -10 -6 -4 2 6
2 + q + --- + q + q - q + q + q + q - q + q
20
q |
In[13]:= | Kauffman[Link[8, Alternating, 3]][a, z] |
Out[13]= | 3 5 7
4 a 2 a 2 a a z 3 5 7 2
a + - + ---- + ---- + -- + - - 3 a z - 9 a z - 8 a z - 3 a z + z -
z z z z a
3
2 2 4 2 6 2 z 3 3 3 5 3
3 a z - 6 a z - 2 a z - -- + 3 a z + 12 a z + 11 a z +
a
7 3 4 2 4 4 4 6 4 5 3 5
3 a z - 2 z + 4 a z + 11 a z + 5 a z - 3 a z - 4 a z -
5 5 7 5 2 6 4 6 6 6 3 7 5 7
2 a z - a z - 3 a z - 5 a z - 2 a z - a z - a z |
In[14]:= | {Vassiliev[2][Link[8, Alternating, 3]], Vassiliev[3][Link[8, Alternating, 3]]} |
Out[14]= | 125
{0, -(---)}
24 |
In[15]:= | Kh[Link[8, Alternating, 3]][q, t] |
Out[15]= | 2 1 1 1 3 2 2 2
3 + -- + ------ + ------ + ------ + ------ + ----- + ----- + ----- +
2 14 6 12 5 10 5 10 4 8 4 8 3 6 3
q q t q t q t q t q t q t q t
3 2 2 3 2 4 2
----- + ----- + ---- + ---- + t + q t + q t
6 2 4 2 4 2
q t q t q t q t |