K11a81
|
|
|
|
Visit K11a81's page at Knotilus!
Visit K11a81's page at the original Knot Atlas! |
| K11a81 Quick Notes |
K11a81 Further Notes and Views
Knot presentations
| Planar diagram presentation | X4251 X10,3,11,4 X12,6,13,5 X14,7,15,8 X22,10,1,9 X2,11,3,12 X18,13,19,14 X20,16,21,15 X8,17,9,18 X6,20,7,19 X16,22,17,21 |
| Gauss code | 1, -6, 2, -1, 3, -10, 4, -9, 5, -2, 6, -3, 7, -4, 8, -11, 9, -7, 10, -8, 11, -5 |
| Dowker-Thistlethwaite code | 4 10 12 14 22 2 18 20 8 6 16 |
| Conway Notation | [.212.20] |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
| Alexander polynomial | [math]\displaystyle{ -t^4+6 t^3-16 t^2+26 t-29+26 t^{-1} -16 t^{-2} +6 t^{-3} - t^{-4} }[/math] |
| Conway polynomial | [math]\displaystyle{ -z^8-2 z^6+1 }[/math] |
| 2nd Alexander ideal (db, data sources) | [math]\displaystyle{ \{1\} }[/math] |
| Determinant and Signature | { 127, 2 } |
| Jones polynomial | [math]\displaystyle{ q^7-4 q^6+8 q^5-13 q^4+18 q^3-20 q^2+20 q-17+13 q^{-1} -8 q^{-2} +4 q^{-3} - q^{-4} }[/math] |
| HOMFLY-PT polynomial (db, data sources) | [math]\displaystyle{ -z^8 a^{-2} -5 z^6 a^{-2} +z^6 a^{-4} +2 z^6-a^2 z^4-9 z^4 a^{-2} +3 z^4 a^{-4} +7 z^4-2 a^2 z^2-6 z^2 a^{-2} +2 z^2 a^{-4} +6 z^2+1 }[/math] |
| Kauffman polynomial (db, data sources) | [math]\displaystyle{ 2 z^{10} a^{-2} +2 z^{10}+5 a z^9+12 z^9 a^{-1} +7 z^9 a^{-3} +4 a^2 z^8+15 z^8 a^{-2} +11 z^8 a^{-4} +8 z^8+a^3 z^7-13 a z^7-26 z^7 a^{-1} -z^7 a^{-3} +11 z^7 a^{-5} -14 a^2 z^6-50 z^6 a^{-2} -14 z^6 a^{-4} +8 z^6 a^{-6} -42 z^6-3 a^3 z^5+3 a z^5-23 z^5 a^{-3} -13 z^5 a^{-5} +4 z^5 a^{-7} +15 a^2 z^4+39 z^4 a^{-2} +2 z^4 a^{-4} -7 z^4 a^{-6} +z^4 a^{-8} +44 z^4+3 a^3 z^3+9 a z^3+18 z^3 a^{-1} +19 z^3 a^{-3} +5 z^3 a^{-5} -2 z^3 a^{-7} -5 a^2 z^2-9 z^2 a^{-2} +z^2 a^{-4} +2 z^2 a^{-6} -13 z^2-a^3 z-4 a z-6 z a^{-1} -4 z a^{-3} -z a^{-5} +1 }[/math] |
| The A2 invariant | [math]\displaystyle{ -q^{12}+q^{10}+q^8-q^6+3 q^4-3 q^2+1+ q^{-2} -2 q^{-4} +5 q^{-6} -3 q^{-8} +3 q^{-10} - q^{-12} -2 q^{-14} +2 q^{-16} -2 q^{-18} + q^{-20} }[/math] |
| The G2 invariant | [math]\displaystyle{ q^{60}-3 q^{58}+9 q^{56}-19 q^{54}+28 q^{52}-32 q^{50}+15 q^{48}+29 q^{46}-92 q^{44}+157 q^{42}-186 q^{40}+140 q^{38}-15 q^{36}-174 q^{34}+360 q^{32}-449 q^{30}+392 q^{28}-169 q^{26}-152 q^{24}+452 q^{22}-607 q^{20}+545 q^{18}-277 q^{16}-87 q^{14}+395 q^{12}-526 q^{10}+425 q^8-144 q^6-183 q^4+416 q^2-444+250 q^{-2} +81 q^{-4} -420 q^{-6} +618 q^{-8} -586 q^{-10} +326 q^{-12} +84 q^{-14} -495 q^{-16} +758 q^{-18} -764 q^{-20} +514 q^{-22} -89 q^{-24} -345 q^{-26} +628 q^{-28} -662 q^{-30} +448 q^{-32} -89 q^{-34} -249 q^{-36} +431 q^{-38} -389 q^{-40} +158 q^{-42} +136 q^{-44} -356 q^{-46} +405 q^{-48} -270 q^{-50} +10 q^{-52} +254 q^{-54} -425 q^{-56} +448 q^{-58} -321 q^{-60} +111 q^{-62} +110 q^{-64} -276 q^{-66} +338 q^{-68} -310 q^{-70} +215 q^{-72} -84 q^{-74} -35 q^{-76} +125 q^{-78} -169 q^{-80} +165 q^{-82} -127 q^{-84} +72 q^{-86} -16 q^{-88} -29 q^{-90} +53 q^{-92} -62 q^{-94} +51 q^{-96} -31 q^{-98} +15 q^{-100} + q^{-102} -8 q^{-104} +10 q^{-106} -10 q^{-108} +6 q^{-110} -3 q^{-112} + q^{-114} }[/math] |
KnotTheory`, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["K11a81"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
[math]\displaystyle{ -t^4+6 t^3-16 t^2+26 t-29+26 t^{-1} -16 t^{-2} +6 t^{-3} - t^{-4} }[/math] |
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
[math]\displaystyle{ -z^8-2 z^6+1 }[/math] |
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
[math]\displaystyle{ \{1\} }[/math] |
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 127, 2 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
[math]\displaystyle{ q^7-4 q^6+8 q^5-13 q^4+18 q^3-20 q^2+20 q-17+13 q^{-1} -8 q^{-2} +4 q^{-3} - q^{-4} }[/math] |
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
[math]\displaystyle{ -z^8 a^{-2} -5 z^6 a^{-2} +z^6 a^{-4} +2 z^6-a^2 z^4-9 z^4 a^{-2} +3 z^4 a^{-4} +7 z^4-2 a^2 z^2-6 z^2 a^{-2} +2 z^2 a^{-4} +6 z^2+1 }[/math] |
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
[math]\displaystyle{ 2 z^{10} a^{-2} +2 z^{10}+5 a z^9+12 z^9 a^{-1} +7 z^9 a^{-3} +4 a^2 z^8+15 z^8 a^{-2} +11 z^8 a^{-4} +8 z^8+a^3 z^7-13 a z^7-26 z^7 a^{-1} -z^7 a^{-3} +11 z^7 a^{-5} -14 a^2 z^6-50 z^6 a^{-2} -14 z^6 a^{-4} +8 z^6 a^{-6} -42 z^6-3 a^3 z^5+3 a z^5-23 z^5 a^{-3} -13 z^5 a^{-5} +4 z^5 a^{-7} +15 a^2 z^4+39 z^4 a^{-2} +2 z^4 a^{-4} -7 z^4 a^{-6} +z^4 a^{-8} +44 z^4+3 a^3 z^3+9 a z^3+18 z^3 a^{-1} +19 z^3 a^{-3} +5 z^3 a^{-5} -2 z^3 a^{-7} -5 a^2 z^2-9 z^2 a^{-2} +z^2 a^{-4} +2 z^2 a^{-6} -13 z^2-a^3 z-4 a z-6 z a^{-1} -4 z a^{-3} -z a^{-5} +1 }[/math] |
Vassiliev invariants
| V2 and V3: | (0, 0) |
| V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). The squares with yellow highlighting are those on the "critical diagonals", where [math]\displaystyle{ j-2r=s+1 }[/math] or [math]\displaystyle{ j-2r=s-1 }[/math], where [math]\displaystyle{ s= }[/math]2 is the signature of K11a81. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
[math]\displaystyle{ \textrm{Include}(\textrm{ColouredJonesM.mhtml}) }[/math]
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 17, 2005, 14:44:34)... | |
In[2]:= | Crossings[Knot[11, Alternating, 81]] |
Out[2]= | 11 |
In[3]:= | PD[Knot[11, Alternating, 81]] |
Out[3]= | PD[X[4, 2, 5, 1], X[10, 3, 11, 4], X[12, 6, 13, 5], X[14, 7, 15, 8],X[22, 10, 1, 9], X[2, 11, 3, 12], X[18, 13, 19, 14], X[20, 16, 21, 15], X[8, 17, 9, 18], X[6, 20, 7, 19],X[16, 22, 17, 21]] |
In[4]:= | GaussCode[Knot[11, Alternating, 81]] |
Out[4]= | GaussCode[1, -6, 2, -1, 3, -10, 4, -9, 5, -2, 6, -3, 7, -4, 8, -11, 9, -7, 10, -8, 11, -5] |
In[5]:= | BR[Knot[11, Alternating, 81]] |
Out[5]= | BR[Knot[11, Alternating, 81]] |
In[6]:= | alex = Alexander[Knot[11, Alternating, 81]][t] |
Out[6]= | -4 6 16 26 2 3 4 |
In[7]:= | Conway[Knot[11, Alternating, 81]][z] |
Out[7]= | 6 8 1 - 2 z - z |
In[8]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[8]= | {Knot[11, Alternating, 81], Knot[11, Alternating, 282]} |
In[9]:= | {KnotDet[Knot[11, Alternating, 81]], KnotSignature[Knot[11, Alternating, 81]]} |
Out[9]= | {127, 2} |
In[10]:= | J=Jones[Knot[11, Alternating, 81]][q] |
Out[10]= | -4 4 8 13 2 3 4 5 6 |
In[11]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[11]= | {Knot[11, Alternating, 81], Knot[11, Alternating, 282]} |
In[12]:= | A2Invariant[Knot[11, Alternating, 81]][q] |
Out[12]= | -12 -10 -8 -6 3 3 2 4 6 8 |
In[13]:= | Kauffman[Knot[11, Alternating, 81]][a, z] |
Out[13]= | 2 2 2z 4 z 6 z 3 2 2 z z 9 z |
In[14]:= | {Vassiliev[2][Knot[11, Alternating, 81]], Vassiliev[3][Knot[11, Alternating, 81]]} |
Out[14]= | {0, 0} |
In[15]:= | Kh[Knot[11, Alternating, 81]][q, t] |
Out[15]= | 3 1 3 1 5 3 8 5 |


