In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 17, 2005, 14:44:34)... |
In[2]:= | Crossings[Link[9, Alternating, 24]] |
Out[2]= | 9 |
In[3]:= | PD[Link[9, Alternating, 24]] |
Out[3]= | PD[X[8, 1, 9, 2], X[10, 3, 11, 4], X[14, 6, 15, 5], X[16, 11, 17, 12],
X[18, 13, 7, 14], X[12, 17, 13, 18], X[4, 16, 5, 15], X[2, 7, 3, 8],
X[6, 9, 1, 10]] |
In[4]:= | GaussCode[Link[9, Alternating, 24]] |
Out[4]= | GaussCode[{1, -8, 2, -7, 3, -9},
{8, -1, 9, -2, 4, -6, 5, -3, 7, -4, 6, -5}] |
In[5]:= | BR[Link[9, Alternating, 24]] |
Out[5]= | BR[Link[9, Alternating, 24]] |
In[6]:= | alex = Alexander[Link[9, Alternating, 24]][t] |
Out[6]= | ComplexInfinity |
In[7]:= | Conway[Link[9, Alternating, 24]][z] |
Out[7]= | ComplexInfinity |
In[8]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[8]= | {} |
In[9]:= | {KnotDet[Link[9, Alternating, 24]], KnotSignature[Link[9, Alternating, 24]]} |
Out[9]= | {Infinity, -3} |
In[10]:= | J=Jones[Link[9, Alternating, 24]][q] |
Out[10]= | -(17/2) 2 4 6 6 7 5 4
q - ----- + ----- - ----- + ---- - ---- + ---- - ---- +
15/2 13/2 11/2 9/2 7/2 5/2 3/2
q q q q q q q
2
------- - Sqrt[q]
Sqrt[q] |
In[11]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[11]= | {} |
In[12]:= | A2Invariant[Link[9, Alternating, 24]][q] |
Out[12]= | -26 -22 2 -18 3 3 2 3 -6 -4 2
-q - q - --- + q + --- + --- + --- + -- - q + q + q
20 14 12 10 8
q q q q q |
In[13]:= | Kauffman[Link[9, Alternating, 24]][a, z] |
Out[13]= | 3 5 7
4 6 8 2 a 3 a a 3 5
3 a + 3 a + a - ---- - ---- - -- - 2 a z + 5 a z + 14 a z +
z z z
7 2 2 4 2 6 2 8 2 10 2 3
7 a z - 2 a z - 6 a z - 11 a z - 5 a z + 2 a z + 3 a z -
3 3 5 3 7 3 9 3 2 4 4 4
3 a z - 22 a z - 13 a z + 3 a z + 5 a z + 6 a z +
6 4 8 4 10 4 5 3 5 5 5 7 5
8 a z + 6 a z - a z - a z + 4 a z + 15 a z + 8 a z -
9 5 2 6 4 6 6 6 8 6 3 7 5 7
2 a z - 2 a z - a z - 2 a z - 3 a z - 2 a z - 5 a z -
7 7 4 8 6 8
3 a z - a z - a z |
In[14]:= | {Vassiliev[2][Link[9, Alternating, 24]], Vassiliev[3][Link[9, Alternating, 24]]} |
Out[14]= | 247
{0, ---}
48 |
In[15]:= | Kh[Link[9, Alternating, 24]][q, t] |
Out[15]= | 2 3 1 1 1 3 1 3
-- + -- + ------ + ------ + ------ + ------ + ------ + ------ +
4 2 18 7 16 6 14 6 14 5 12 5 12 4
q q q t q t q t q t q t q t
3 3 3 4 4 2 3 t 2 2
------ + ------ + ----- + ----- + ----- + ---- + ---- + t + -- + q t
10 4 10 3 8 3 8 2 6 2 6 4 2
q t q t q t q t q t q t q t q |