In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 17, 2005, 14:44:34)... |
In[2]:= | Crossings[Link[9, Alternating, 42]] |
Out[2]= | 9 |
In[3]:= | PD[Link[9, Alternating, 42]] |
Out[3]= | PD[X[10, 1, 11, 2], X[12, 4, 13, 3], X[18, 5, 9, 6], X[6, 9, 7, 10],
X[16, 12, 17, 11], X[14, 8, 15, 7], X[4, 14, 5, 13], X[8, 16, 1, 15],
X[2, 17, 3, 18]] |
In[4]:= | GaussCode[Link[9, Alternating, 42]] |
Out[4]= | GaussCode[{1, -9, 2, -7, 3, -4, 6, -8},
{4, -1, 5, -2, 7, -6, 8, -5, 9, -3}] |
In[5]:= | BR[Link[9, Alternating, 42]] |
Out[5]= | BR[Link[9, Alternating, 42]] |
In[6]:= | alex = Alexander[Link[9, Alternating, 42]][t] |
Out[6]= | ComplexInfinity |
In[7]:= | Conway[Link[9, Alternating, 42]][z] |
Out[7]= | ComplexInfinity |
In[8]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[8]= | {} |
In[9]:= | {KnotDet[Link[9, Alternating, 42]], KnotSignature[Link[9, Alternating, 42]]} |
Out[9]= | {Infinity, 1} |
In[10]:= | J=Jones[Link[9, Alternating, 42]][q] |
Out[10]= | -(7/2) 3 6 8 3/2 5/2
-q + ---- - ---- + ------- - 10 Sqrt[q] + 9 q - 9 q +
5/2 3/2 Sqrt[q]
q q
7/2 9/2 11/2
6 q - 3 q + q |
In[11]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[11]= | {} |
In[12]:= | A2Invariant[Link[9, Alternating, 42]][q] |
Out[12]= | -10 -8 2 2 4 8 10 12 14 16
3 + q - q + -- - q + 4 q + 2 q + q - 2 q + q - q
6
q |
In[13]:= | Kauffman[Link[9, Alternating, 42]][a, z] |
Out[13]= | 2 2 2
1 a z 2 z 6 z 3 2 z 3 z 6 z
1 - --- - - - -- + --- + --- + 2 a z - a z - 5 z + -- - ---- - ---- -
a z z 5 3 a 6 4 2
a a a a a
3 3 3 4
2 2 3 z 4 z 12 z 3 3 3 4 z
3 a z + ---- - ---- - ----- - 3 a z + 2 a z + 11 z - -- +
5 3 a 6
a a a
4 4 5 5 5
6 z 12 z 2 4 3 z 6 z 17 z 5 3 5
---- + ----- + 6 a z - ---- + ---- + ----- + 7 a z - a z -
4 2 5 3 a
a a a a
6 6 7 7 8
6 5 z 5 z 2 6 5 z 9 z 7 8 2 z
3 z - ---- - ---- - 3 a z - ---- - ---- - 4 a z - 2 z - ----
4 2 3 a 2
a a a a |
In[14]:= | {Vassiliev[2][Link[9, Alternating, 42]], Vassiliev[3][Link[9, Alternating, 42]]} |
Out[14]= | 3
{0, -(-)}
2 |
In[15]:= | Kh[Link[9, Alternating, 42]][q, t] |
Out[15]= | 2 1 2 1 4 2 4 4 2
6 + 6 q + ----- + ----- + ----- + ----- + ----- + - + ---- + 5 q t +
8 4 6 3 4 3 4 2 2 2 t 2
q t q t q t q t q t q t
4 4 2 6 2 6 3 8 3 8 4 10 4
4 q t + 4 q t + 5 q t + 2 q t + 4 q t + q t + 2 q t +
12 5
q t |