In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 17, 2005, 14:44:34)... |
In[2]:= | Crossings[Link[9, Alternating, 4]] |
Out[2]= | 9 |
In[3]:= | PD[Link[9, Alternating, 4]] |
Out[3]= | PD[X[6, 1, 7, 2], X[10, 4, 11, 3], X[12, 8, 13, 7], X[16, 10, 17, 9],
X[18, 14, 5, 13], X[14, 18, 15, 17], X[8, 16, 9, 15], X[2, 5, 3, 6],
X[4, 12, 1, 11]] |
In[4]:= | GaussCode[Link[9, Alternating, 4]] |
Out[4]= | GaussCode[{1, -8, 2, -9}, {8, -1, 3, -7, 4, -2, 9, -3, 5, -6, 7, -4, 6,
-5}] |
In[5]:= | BR[Link[9, Alternating, 4]] |
Out[5]= | BR[Link[9, Alternating, 4]] |
In[6]:= | alex = Alexander[Link[9, Alternating, 4]][t] |
Out[6]= | ComplexInfinity |
In[7]:= | Conway[Link[9, Alternating, 4]][z] |
Out[7]= | ComplexInfinity |
In[8]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[8]= | {} |
In[9]:= | {KnotDet[Link[9, Alternating, 4]], KnotSignature[Link[9, Alternating, 4]]} |
Out[9]= | {Infinity, 3} |
In[10]:= | J=Jones[Link[9, Alternating, 4]][q] |
Out[10]= | 1 3/2 5/2 7/2 9/2 11/2
-(-------) + 2 Sqrt[q] - 5 q + 6 q - 9 q + 8 q - 7 q +
Sqrt[q]
13/2 15/2 17/2
6 q - 3 q + q |
In[11]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[11]= | {} |
In[12]:= | A2Invariant[Link[9, Alternating, 4]][q] |
Out[12]= | -2 2 4 8 10 12 14 16 20 22
q + q + 3 q + 4 q + 2 q + 2 q + 2 q - 2 q - 3 q - q +
24 26
q - q |
In[13]:= | Kauffman[Link[9, Alternating, 4]][a, z] |
Out[13]= | 2
2 5 3 -2 1 2 1 2 z 3 z 2 z 3 z z
-- + -- + -- - a - ---- - ---- + --- + --- + --- - --- - --- + --- -
8 6 4 7 5 a z 7 5 3 a 10
a a a a z a z a a a a
2 2 2 2 3 3 3 3 3 4
5 z 13 z 8 z z 3 z 4 z 6 z 4 z 3 z z
---- - ----- - ---- - -- + ---- - ---- - ---- + ---- + ---- - --- +
8 6 4 2 9 7 5 3 a 10
a a a a a a a a a
4 4 4 4 5 5 5 5 5 6
8 z 16 z 11 z 4 z 3 z 5 z 10 z z z 5 z
---- + ----- + ----- + ---- - ---- + ---- + ----- + -- - -- - ---- -
8 6 4 2 9 7 5 3 a 8
a a a a a a a a a
6 6 6 7 7 7 8 8
7 z 4 z 2 z 4 z 6 z 2 z z z
---- - ---- - ---- - ---- - ---- - ---- - -- - --
6 4 2 7 5 3 6 4
a a a a a a a a |
In[14]:= | {Vassiliev[2][Link[9, Alternating, 4]], Vassiliev[3][Link[9, Alternating, 4]]} |
Out[14]= | {0, -7} |
In[15]:= | Kh[Link[9, Alternating, 4]][q, t] |
Out[15]= | 2
2 4 1 1 q 4 6 6 2 8 2
4 q + 3 q + ----- + - + -- + 4 q t + 2 q t + 5 q t + 4 q t +
2 2 t t
q t
8 3 10 3 10 4 12 4 12 5 14 5
3 q t + 5 q t + 4 q t + 3 q t + 2 q t + 4 q t +
14 6 16 6 18 7
q t + 2 q t + q t |