In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 17, 2005, 14:44:34)... |
In[2]:= | Crossings[Link[9, Alternating, 44]] |
Out[2]= | 9 |
In[3]:= | PD[Link[9, Alternating, 44]] |
Out[3]= | PD[X[6, 1, 7, 2], X[10, 3, 11, 4], X[18, 14, 9, 13], X[16, 12, 17, 11],
X[12, 18, 13, 17], X[8, 16, 5, 15], X[14, 8, 15, 7], X[2, 5, 3, 6],
X[4, 9, 1, 10]] |
In[4]:= | GaussCode[Link[9, Alternating, 44]] |
Out[4]= | GaussCode[{1, -8, 2, -9}, {8, -1, 7, -6},
{9, -2, 4, -5, 3, -7, 6, -4, 5, -3}] |
In[5]:= | BR[Link[9, Alternating, 44]] |
Out[5]= | BR[Link[9, Alternating, 44]] |
In[6]:= | alex = Alexander[Link[9, Alternating, 44]][t] |
Out[6]= | ComplexInfinity |
In[7]:= | Conway[Link[9, Alternating, 44]][z] |
Out[7]= | ComplexInfinity |
In[8]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[8]= | {} |
In[9]:= | {KnotDet[Link[9, Alternating, 44]], KnotSignature[Link[9, Alternating, 44]]} |
Out[9]= | {Infinity, 2} |
In[10]:= | J=Jones[Link[9, Alternating, 44]][q] |
Out[10]= | -3 -2 5 2 3 4 5 6
-5 + q - q + - + 8 q - 7 q + 7 q - 6 q + 3 q - q
q |
In[11]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[11]= | {} |
In[12]:= | A2Invariant[Link[9, Alternating, 44]][q] |
Out[12]= | -10 2 3 7 6 2 4 6 8 10 12
7 + q + -- + -- + -- + -- + 6 q + q + 2 q - 3 q - q - 2 q -
8 6 4 2
q q q q
14 16 18
2 q + q - q |
In[13]:= | Kauffman[Link[9, Alternating, 44]][a, z] |
Out[13]= | 2
2 10 2 5 1 4 2 a 1 5 9
-14 - -- - -- - 7 a + -- + ----- + ----- + ---- - ---- - ---- - --- -
4 2 2 4 2 2 2 2 5 3 a z
a a z a z a z z a z a z
2 2
5 a 3 z 13 z 21 z 2 6 z 16 z 2 2
--- + --- + ---- + ---- + 11 a z + 19 z + ---- + ----- + 9 a z +
z 5 3 a 4 2
a a a a
3 3 3 3 4 4 4
z 6 z 12 z 11 z 3 4 3 z 11 z 21 z
-- - ---- - ----- - ----- - 6 a z - 12 z + ---- - ----- - ----- -
7 5 3 a 6 4 2
a a a a a a
5 5 5 6 6 7
2 4 6 z z 8 z 5 6 7 z 7 z 2 6 4 z
5 a z + ---- - -- - ---- - a z + z + ---- + ---- + a z + ---- +
5 3 a 4 2 3
a a a a a
7 8
5 z 7 8 z
---- + a z + z + --
a 2
a |
In[14]:= | {Vassiliev[2][Link[9, Alternating, 44]], Vassiliev[3][Link[9, Alternating, 44]]} |
Out[14]= | 17
{0, --}
6 |
In[15]:= | Kh[Link[9, Alternating, 44]][q, t] |
Out[15]= | 3 1 1 1 4 1 1 4 q
7 q + 4 q + ----- + ----- + ----- + ----- + ---- + --- + --- +
7 4 5 4 5 3 3 2 2 q t t
q t q t q t q t q t
3 5 5 2 7 2 7 3 9 3 9 4
3 q t + 4 q t + 4 q t + 3 q t + 2 q t + 4 q t + q t +
11 4 13 5
2 q t + q t |