In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 17, 2005, 14:44:34)... |
In[2]:= | Crossings[Link[9, Alternating, 30]] |
Out[2]= | 9 |
In[3]:= | PD[Link[9, Alternating, 30]] |
Out[3]= | PD[X[8, 1, 9, 2], X[2, 9, 3, 10], X[10, 3, 11, 4], X[6, 7, 1, 8],
X[16, 13, 17, 14], X[14, 6, 15, 5], X[4, 16, 5, 15],
X[18, 11, 7, 12], X[12, 17, 13, 18]] |
In[4]:= | GaussCode[Link[9, Alternating, 30]] |
Out[4]= | GaussCode[{1, -2, 3, -7, 6, -4},
{4, -1, 2, -3, 8, -9, 5, -6, 7, -5, 9, -8}] |
In[5]:= | BR[Link[9, Alternating, 30]] |
Out[5]= | BR[Link[9, Alternating, 30]] |
In[6]:= | alex = Alexander[Link[9, Alternating, 30]][t] |
Out[6]= | ComplexInfinity |
In[7]:= | Conway[Link[9, Alternating, 30]][z] |
Out[7]= | ComplexInfinity |
In[8]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[8]= | {} |
In[9]:= | {KnotDet[Link[9, Alternating, 30]], KnotSignature[Link[9, Alternating, 30]]} |
Out[9]= | {Infinity, -3} |
In[10]:= | J=Jones[Link[9, Alternating, 30]][q] |
Out[10]= | -(17/2) 2 3 5 5 5 4 3
q - ----- + ----- - ----- + ---- - ---- + ---- - ---- +
15/2 13/2 11/2 9/2 7/2 5/2 3/2
q q q q q q q
1
------- - Sqrt[q]
Sqrt[q] |
In[11]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[11]= | {} |
In[12]:= | A2Invariant[Link[9, Alternating, 30]][q] |
Out[12]= | -26 2 -14 2 2 -2 2
1 - q + --- + q + -- + -- + q + q
18 8 4
q q q |
In[13]:= | Kauffman[Link[9, Alternating, 30]][a, z] |
Out[13]= | 3
2 a a 3 5 7 9 2 2
-a + - + -- - 4 a z - 3 a z + 4 a z + 2 a z - a z + a z +
z z
4 2 6 2 8 2 10 2 3 3 3 5 3
5 a z + a z - a z + 2 a z + 4 a z + 3 a z - 12 a z -
7 3 9 3 2 4 4 4 6 4 8 4 10 4
7 a z + 4 a z + 2 a z - 6 a z - 4 a z + 3 a z - a z -
5 3 5 5 5 7 5 9 5 2 6 4 6
a z + a z + 9 a z + 5 a z - 2 a z - a z + 3 a z +
6 6 8 6 3 7 5 7 7 7 4 8 6 8
2 a z - 2 a z - a z - 3 a z - 2 a z - a z - a z |
In[14]:= | {Vassiliev[2][Link[9, Alternating, 30]], Vassiliev[3][Link[9, Alternating, 30]]} |
Out[14]= | 79
{0, --}
48 |
In[15]:= | Kh[Link[9, Alternating, 30]][q, t] |
Out[15]= | -4 3 1 1 1 2 1 3
q + -- + ------ + ------ + ------ + ------ + ------ + ------ +
2 18 7 16 6 14 6 14 5 12 5 12 4
q q t q t q t q t q t q t
2 2 3 3 3 2 2 t 2 2
------ + ------ + ----- + ----- + ----- + ---- + ---- + -- + q t
10 4 10 3 8 3 8 2 6 2 6 4 2
q t q t q t q t q t q t q t q |