K11n52

From Knot Atlas
Revision as of 16:11, 1 September 2005 by ScottTestRobot (talk | contribs)
Jump to navigationJump to search

K11n51.gif

K11n51

K11n53.gif

K11n53

K11n52.gif
(Knotscape image)
See the full Hoste-Thistlethwaite Table of 11 Crossing Knots.

Visit K11n52 at Knotilus!



Knot presentations

Planar diagram presentation X4251 X8493 X5,14,6,15 X2837 X16,10,17,9 X18,11,19,12 X13,6,14,7 X22,16,1,15 X20,18,21,17 X10,19,11,20 X12,22,13,21
Gauss code 1, -4, 2, -1, -3, 7, 4, -2, 5, -10, 6, -11, -7, 3, 8, -5, 9, -6, 10, -9, 11, -8
Dowker-Thistlethwaite code 4 8 -14 2 16 18 -6 22 20 10 12
A Braid Representative {{{braid_table}}}
A Morse Link Presentation K11n52 ML.gif

Four dimensional invariants

Smooth 4 genus Missing
Topological 4 genus Missing
Concordance genus
Rasmussen s-Invariant -2

[edit Notes for K11n52's four dimensional invariants]

Polynomial invariants

Alexander polynomial
Conway polynomial
2nd Alexander ideal (db, data sources)
Determinant and Signature { 59, 2 }
Jones polynomial
HOMFLY-PT polynomial (db, data sources)
Kauffman polynomial (db, data sources)
The A2 invariant Data:K11n52/QuantumInvariant/A2/1,0
The G2 invariant Data:K11n52/QuantumInvariant/G2/1,0

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {9_32, K11n124,}

Same Jones Polynomial (up to mirroring, ): {}

Vassiliev invariants

V2 and V3: (-1, 0)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 2 is the signature of K11n52. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-2-101234567χ
17         1-1
15        2 2
13       31 -2
11      52  3
9     53   -2
7    55    0
5   45     1
3  35      -2
1 25       3
-1 2        -2
-32         2
Integral Khovanov Homology

(db, data source)

  

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages.

See/edit the Hoste-Thistlethwaite Knot Page master template (intermediate).

See/edit the Hoste-Thistlethwaite_Splice_Base (expert).

Back to the top.

K11n51.gif

K11n51

K11n53.gif

K11n53