K11n62

From Knot Atlas
Revision as of 16:24, 1 September 2005 by ScottTestRobot (talk | contribs)
Jump to navigationJump to search

K11n61.gif

K11n61

K11n63.gif

K11n63

K11n62.gif
(Knotscape image)
See the full Hoste-Thistlethwaite Table of 11 Crossing Knots.

Visit K11n62 at Knotilus!



Knot presentations

Planar diagram presentation X4251 X8493 X14,5,15,6 X2837 X9,17,10,16 X11,20,12,21 X13,18,14,19 X6,15,7,16 X17,1,18,22 X19,12,20,13 X21,10,22,11
Gauss code 1, -4, 2, -1, 3, -8, 4, -2, -5, 11, -6, 10, -7, -3, 8, 5, -9, 7, -10, 6, -11, 9
Dowker-Thistlethwaite code 4 8 14 2 -16 -20 -18 6 -22 -12 -10
A Braid Representative {{{braid_table}}}
A Morse Link Presentation K11n62 ML.gif

Four dimensional invariants

Smooth 4 genus Missing
Topological 4 genus Missing
Concordance genus [math]\displaystyle{ 2 }[/math]
Rasmussen s-Invariant 0

[edit Notes for K11n62's four dimensional invariants]

Polynomial invariants

Alexander polynomial [math]\displaystyle{ 2 t^2-8 t+13-8 t^{-1} +2 t^{-2} }[/math]
Conway polynomial [math]\displaystyle{ 2 z^4+1 }[/math]
2nd Alexander ideal (db, data sources) [math]\displaystyle{ \{1\} }[/math]
Determinant and Signature { 33, 0 }
Jones polynomial [math]\displaystyle{ -q^5+2 q^4-3 q^3+5 q^2-5 q+6-5 q^{-1} +3 q^{-2} -2 q^{-3} + q^{-4} }[/math]
HOMFLY-PT polynomial (db, data sources) [math]\displaystyle{ a^4-2 z^2 a^2-2 a^2+z^4+z^2+1+z^4 a^{-2} +2 z^2 a^{-2} +2 a^{-2} -z^2 a^{-4} - a^{-4} }[/math]
Kauffman polynomial (db, data sources) [math]\displaystyle{ a z^9+z^9 a^{-1} +a^2 z^8+2 z^8 a^{-2} +3 z^8-5 a z^7-3 z^7 a^{-1} +2 z^7 a^{-3} -5 a^2 z^6-7 z^6 a^{-2} +2 z^6 a^{-4} -14 z^6+2 a^3 z^5+11 a z^5+3 z^5 a^{-1} -5 z^5 a^{-3} +z^5 a^{-5} +a^4 z^4+12 a^2 z^4+8 z^4 a^{-2} -6 z^4 a^{-4} +25 z^4-5 a^3 z^3-8 a z^3+z^3 a^{-1} +z^3 a^{-3} -3 z^3 a^{-5} -3 a^4 z^2-11 a^2 z^2-z^2 a^{-2} +3 z^2 a^{-4} -12 z^2+2 a^3 z+3 a z+z a^{-1} +z a^{-3} +z a^{-5} +a^4+2 a^2-2 a^{-2} - a^{-4} +1 }[/math]
The A2 invariant Data:K11n62/QuantumInvariant/A2/1,0
The G2 invariant Data:K11n62/QuantumInvariant/G2/1,0

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {10_146, K11n18,}

Same Jones Polynomial (up to mirroring, [math]\displaystyle{ q\leftrightarrow q^{-1} }[/math]): {}

Vassiliev invariants

V2 and V3: (0, 2)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9
[math]\displaystyle{ 0 }[/math] [math]\displaystyle{ 16 }[/math] [math]\displaystyle{ 0 }[/math] [math]\displaystyle{ -16 }[/math] [math]\displaystyle{ -16 }[/math] [math]\displaystyle{ 0 }[/math] [math]\displaystyle{ \frac{64}{3} }[/math] [math]\displaystyle{ -\frac{128}{3} }[/math] [math]\displaystyle{ 48 }[/math] [math]\displaystyle{ 0 }[/math] [math]\displaystyle{ 128 }[/math] [math]\displaystyle{ 0 }[/math] [math]\displaystyle{ 0 }[/math] [math]\displaystyle{ 216 }[/math] [math]\displaystyle{ \frac{208}{3} }[/math] [math]\displaystyle{ \frac{160}{3} }[/math] [math]\displaystyle{ -\frac{104}{3} }[/math] [math]\displaystyle{ -24 }[/math]

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). The squares with yellow highlighting are those on the "critical diagonals", where [math]\displaystyle{ j-2r=s+1 }[/math] or [math]\displaystyle{ j-2r=s-1 }[/math], where [math]\displaystyle{ s= }[/math]0 is the signature of K11n62. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-4-3-2-1012345χ
11         1-1
9        1 1
7       21 -1
5      31  2
3     22   0
1    43    1
-1   23     1
-3  13      -2
-5 12       1
-7 1        -1
-91         1
Integral Khovanov Homology

(db, data source)

  
[math]\displaystyle{ \dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} }[/math] [math]\displaystyle{ i=-1 }[/math] [math]\displaystyle{ i=1 }[/math]
[math]\displaystyle{ r=-4 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-3 }[/math] [math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-2 }[/math] [math]\displaystyle{ {\mathbb Z}^{2}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-1 }[/math] [math]\displaystyle{ {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{2} }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math]
[math]\displaystyle{ r=0 }[/math] [math]\displaystyle{ {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{3} }[/math] [math]\displaystyle{ {\mathbb Z}^{4} }[/math]
[math]\displaystyle{ r=1 }[/math] [math]\displaystyle{ {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{2} }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math]
[math]\displaystyle{ r=2 }[/math] [math]\displaystyle{ {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{3} }[/math] [math]\displaystyle{ {\mathbb Z}^{3} }[/math]
[math]\displaystyle{ r=3 }[/math] [math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2^{2} }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math]
[math]\displaystyle{ r=4 }[/math] [math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=5 }[/math] [math]\displaystyle{ {\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages.

See/edit the Hoste-Thistlethwaite Knot Page master template (intermediate).

See/edit the Hoste-Thistlethwaite_Splice_Base (expert).

Back to the top.

K11n61.gif

K11n61

K11n63.gif

K11n63