K11n62

From Knot Atlas
Revision as of 16:24, 1 September 2005 by ScottTestRobot (talk | contribs)
Jump to navigationJump to search

K11n61.gif

K11n61

K11n63.gif

K11n63

K11n62.gif
(Knotscape image)
See the full Hoste-Thistlethwaite Table of 11 Crossing Knots.

Visit K11n62 at Knotilus!



Knot presentations

Planar diagram presentation X4251 X8493 X14,5,15,6 X2837 X9,17,10,16 X11,20,12,21 X13,18,14,19 X6,15,7,16 X17,1,18,22 X19,12,20,13 X21,10,22,11
Gauss code 1, -4, 2, -1, 3, -8, 4, -2, -5, 11, -6, 10, -7, -3, 8, 5, -9, 7, -10, 6, -11, 9
Dowker-Thistlethwaite code 4 8 14 2 -16 -20 -18 6 -22 -12 -10
A Braid Representative {{{braid_table}}}
A Morse Link Presentation K11n62 ML.gif

Four dimensional invariants

Smooth 4 genus Missing
Topological 4 genus Missing
Concordance genus
Rasmussen s-Invariant 0

[edit Notes for K11n62's four dimensional invariants]

Polynomial invariants

Alexander polynomial
Conway polynomial
2nd Alexander ideal (db, data sources)
Determinant and Signature { 33, 0 }
Jones polynomial
HOMFLY-PT polynomial (db, data sources)
Kauffman polynomial (db, data sources)
The A2 invariant Data:K11n62/QuantumInvariant/A2/1,0
The G2 invariant Data:K11n62/QuantumInvariant/G2/1,0

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {10_146, K11n18,}

Same Jones Polynomial (up to mirroring, ): {}

Vassiliev invariants

V2 and V3: (0, 2)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 0 is the signature of K11n62. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-4-3-2-1012345χ
11         1-1
9        1 1
7       21 -1
5      31  2
3     22   0
1    43    1
-1   23     1
-3  13      -2
-5 12       1
-7 1        -1
-91         1
Integral Khovanov Homology

(db, data source)

  

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages.

See/edit the Hoste-Thistlethwaite Knot Page master template (intermediate).

See/edit the Hoste-Thistlethwaite_Splice_Base (expert).

Back to the top.

K11n61.gif

K11n61

K11n63.gif

K11n63