K11a54

From Knot Atlas
Revision as of 16:25, 1 September 2005 by ScottTestRobot (talk | contribs)
Jump to navigationJump to search

K11a53.gif

K11a53

K11a55.gif

K11a55

K11a54.gif
(Knotscape image)
See the full Hoste-Thistlethwaite Table of 11 Crossing Knots.

Visit K11a54 at Knotilus!



Knot presentations

Planar diagram presentation X4251 X8394 X14,6,15,5 X16,7,17,8 X2,9,3,10 X18,11,19,12 X20,13,21,14 X22,16,1,15 X12,17,13,18 X10,19,11,20 X6,21,7,22
Gauss code 1, -5, 2, -1, 3, -11, 4, -2, 5, -10, 6, -9, 7, -3, 8, -4, 9, -6, 10, -7, 11, -8
Dowker-Thistlethwaite code 4 8 14 16 2 18 20 22 12 10 6
A Braid Representative {{{braid_table}}}
A Morse Link Presentation K11a54 ML.gif

Three dimensional invariants

Symmetry type Chiral
Unknotting number
3-genus 3
Bridge index 3
Super bridge index Missing
Nakanishi index Missing
Maximal Thurston-Bennequin number Data:K11a54/ThurstonBennequinNumber
Hyperbolic Volume 16.7029
A-Polynomial See Data:K11a54/A-polynomial

[edit Notes for K11a54's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus Missing
Topological 4 genus Missing
Concordance genus
Rasmussen s-Invariant 2

[edit Notes for K11a54's four dimensional invariants]

Polynomial invariants

Alexander polynomial
Conway polynomial
2nd Alexander ideal (db, data sources)
Determinant and Signature { 139, -2 }
Jones polynomial
HOMFLY-PT polynomial (db, data sources)
Kauffman polynomial (db, data sources)
The A2 invariant Data:K11a54/QuantumInvariant/A2/1,0
The G2 invariant Data:K11a54/QuantumInvariant/G2/1,0

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {K11a172,}

Same Jones Polynomial (up to mirroring, ): {}

Vassiliev invariants

V2 and V3: (-1, 3)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where -2 is the signature of K11a54. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-8-7-6-5-4-3-2-10123χ
5           1-1
3          4 4
1         61 -5
-1        104  6
-3       117   -4
-5      129    3
-7     1011     1
-9    812      -4
-11   510       5
-13  28        -6
-15 15         4
-17 2          -2
-191           1
Integral Khovanov Homology

(db, data source)

  

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages.

See/edit the Hoste-Thistlethwaite Knot Page master template (intermediate).

See/edit the Hoste-Thistlethwaite_Splice_Base (expert).

Back to the top.

K11a53.gif

K11a53

K11a55.gif

K11a55